Skip to main content
Log in

Candidacidal mechanism of the arenicin-3-derived peptide NZ17074 from Arenicola marina

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The candidacidal mechanisms of NZ17074, which is a variant of arenicin-3 from Arenicola marina, against human pathogenic fungus Candida albicans are reported in this work. The minimum inhibitory concentration (MIC) of NZ17074 toward C. albicans was 4 μg/ml, and this peptide exerted marked candidacidal activity in an energy-dependent and salt-sensitive manner. The flow cytometric analysis using propidium iodide (PI) showed that the plasma membrane of cells treated with NZ17074 was perturbed and that the cells were arrested in the G2/M phase. The dihydrorhodamine-123 (DHR-123) staining showed that the reactive oxygen species (ROS) production of C. albicans increased after exposure to NZ17074. Typical cellular disruption events, such as mitochondrial degradation, nuclear fragmentation, nuclear membrane disruption, and chromatin condensation, were further revealed through rhodamine 123 (RH123) staining, 4′,6-diamidino-2-phenylindole (DAPI) staining, and transmission electron microscopy. In addition, the intracellular localization of this peptide was concentration dependent: it was located in the membrane at low concentrations (4 to 8 μg/ml) and penetrated into the cytoplasm at high concentrations (16 to 32 μg/ml). Our results suggested that NZ17074 exerts its candidacidal effects by disrupting the cell membrane, inducing apoptosis, and interrupting the cell cycle. These findings showed the potential of NZ17074 as a new candidacidal peptide, in addition to its antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baev D, Li XS, Dong J, Keng P, Edgerton M (2002) Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect Immun 70:4777–4784

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H (2001) In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob Agents Chemother 45:3209–3212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berman J (2006) Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9:595–601

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho J, Lee DG (2011) The antimicrobial peptide arenicin-1 promotes generation of reactive oxygen species and induction of apoptosis. Biochim Biophys Acta Gen Subj 1810:1246–1251

    Article  CAS  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta Biomembr 1462:71–87

    Article  CAS  Google Scholar 

  • Diz MS, Carvalho AO, Rodrigues R, Neves-Ferreira AG, Da Cunha M, Alves EW, Okorokova-Façanha AL, Oliveira MA, Perales J, Machado OL, Gomes VM (2006) Antimicrobial peptides from chili pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochim Biophys Acta Gen Subj 1760:1323–1332

    Article  CAS  Google Scholar 

  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    Article  PubMed  CAS  Google Scholar 

  • Gyurko C, Lendenmann U, Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) Killing of Candida albicans by histatin 5: cellular uptake and energy requirement. Antonie Van Leeuwenhoek 79:297–309

    Article  PubMed  CAS  Google Scholar 

  • Hao B, Cheng S, Clancy CJ, Nguyen MH (2013) Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis. Antimicrob Agents Chemother 57:326–332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC, Amerongen AV, Abee T (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274:7286–7291

    Article  PubMed  CAS  Google Scholar 

  • Hoegenhaug HHK, Mygind PH, Kruse T, Segura DR, Sandvang D, Neve S (2011) Antimicrobial peptide variants and polynucleotides encoding same. WIPO Patent 2011154525

  • Hwang B, Hwang JS, Lee J, Lee DG (2010) Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Biochem Biophys Res Commun 400:352–357

    Article  PubMed  CAS  Google Scholar 

  • Hwang B, Cho J, Hwang IS, Jin HG, Woo ER, Lee DG (2011a) Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem Biophys Res Commun 410:489–493

    Article  PubMed  CAS  Google Scholar 

  • Hwang B, Hwang JS, Lee J, Lee DG (2011b) The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem Biophys Res Commun 405:267–271

    Article  PubMed  CAS  Google Scholar 

  • Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y, Lee DG (2011c) Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem Biophys Res Commun 408:89–93

    Article  PubMed  CAS  Google Scholar 

  • Jung HJ, Park Y, Hahm K-S, Lee DG (2006) Biological activity of Tat (47–58) peptide on human pathogenic fungi. Biochem Biophys Res Commun 345:222–228

    Article  PubMed  CAS  Google Scholar 

  • Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70:220–233

    Article  PubMed  CAS  Google Scholar 

  • Lee IH, Cho Y (1997) Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 65:2898–2903

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee DG, Park Y, Kim HN, Kim HK, Kim PI, Choi BH, Hahm KS (2002) Antifungal mechanism of an antimicrobial peptide, HP (2–20), derived from N-terminus of helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem Biophys Res Commun 291:1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Hwang JS, Hwang IS, Cho J, Lee E, Kim Y, Lee DG (2012) Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic Biol Med 52:2302–2311

    Article  PubMed  CAS  Google Scholar 

  • Lehrer R, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81:1829–1835

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lupetti A, Paulusma-Annema A, Welling MM, Senesi S, van Dissel JT, Nibbering PH (2000) Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother 44:3257–3263

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Madeo F, Herker E, Wissing S, Jungwirth H, Tobias E, Fröhlich KU (2004) Apoptosis in yeast. Curr Opin Microbiol 7:655–660

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Anaya C, Dickinson JR, Sudbery PE (2003) In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431

    Article  PubMed  CAS  Google Scholar 

  • Maurya IK, Pathak S, Sharma M, Sanwal H, Chaudhary P, Tupe S, Deshpande M, Chauhan VS, Prasad R (2011) Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides 32:1732–1740

    Article  PubMed  CAS  Google Scholar 

  • Odds FC, Kerridge D (1985) Morphogenesis in Candida albicans. Crit Rev Microbiol 12:45–93

    Article  PubMed  CAS  Google Scholar 

  • Okkers D, Dicks L, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol 87:726–734

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikova TV, Shenkarev ZO, Balandin SV, Nadezhdin KD, Paramonov AS, Kokryakov VN, Arseniev AS (2008) Molecular insight into mechanism of antimicrobial action of the β-hairpin peptide arenicin: specific oligomerization in detergent micelles. Biopolymers 89(5):455–464

    Article  PubMed  CAS  Google Scholar 

  • Park C, Lee DG (2009) Fungicidal effect of antimicrobial peptide arenicin-1. Biochim Biophys Acta Biomembr 1788:1790–1796

    Article  CAS  Google Scholar 

  • Park C, Lee DG (2010) Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun 394:170–172

    Article  PubMed  CAS  Google Scholar 

  • Park C, Cho J, Lee J, Lee DG (2010) Membranolytic antifungal activity of arenicin-1 requires the N-terminal tryptophan and the beta-turn arginine. Biotechnol Lett 33:185–189

    Article  PubMed  CAS  Google Scholar 

  • Pawaiya R, Sharma A, Swarup D, Somvanshi R (2011) Pathology of mycotic gastritis in a wild Indian freshwater/marsh crocodile (Mugger; Crocodylus palustris): a case report. Vet Med 56:135–139

    Google Scholar 

  • Pereira HA, Tsyshevskaya-Hoover I, Hinsley H, Logan S, Nguyen M, Nguyen TT, Pohl J, Wozniak K, Fidel PL (2010) Candidacidal activity of synthetic peptides based on the antimicrobial domain of the neutrophil-derived protein, CAP37. Med Mycol 48:263–272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rua D, Tobe BT, Kron SJ (2001) Cell cycle control of yeast filamentous growth. Curr Opin Microbiol 4:720–727

    Article  PubMed  CAS  Google Scholar 

  • Sapienza K, Bannister W, Balzan R (2008) Mitochondrial involvement in aspirin-induced apoptosis in yeast. Microbiology 154:2740–2747

    Article  PubMed  CAS  Google Scholar 

  • Schägger H (2006) Tricine–SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  CAS  Google Scholar 

  • Sudbery PE (2001) The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol Microbiol 41:19–31

    Article  PubMed  CAS  Google Scholar 

  • Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748

    Article  PubMed  CAS  Google Scholar 

  • Sung WS, Jung HJ, Park K, Kim HS, Lee IS, Lee DG (2007) 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF); antimicrobial compound with cell cycle arrest in nosocomial pathogens. Life Sci 80:586–591

    Article  PubMed  CAS  Google Scholar 

  • Veerman EC, Valentijn-Benz M, Nazmi K, Ruissen AL, Walgreen-Weterings E, van Marle J, Doust AB, van’t Hof W, Bolscher JG, Amerongen AV (2007) Energy depletion protects Candida albicans against antimicrobial peptides by rigidifying its cell membrane. J Biol Chem 282:18831–18841

    Article  PubMed  CAS  Google Scholar 

  • Vylkova S, Nayyar N, Li W, Edgerton M (2007) Human β-defensins kill Candida albicans in an energy-dependent and salt-sensitive manner without causing membrane disruption. Antimicrob Agents Chemother 51:154–161

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wakabayashi H, Abe S, Teraguchi S, Hayasawa H, Yamaguchi H (1998) Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrob Agents Chemother 42:1587–1591

  • Wightman R, Bates S, Amornrrattanapan P, Sudbery P (2004) In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Biol 164:581–591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu XZ, Chang WQ, Cheng AX, Sun LM, Lou HX (2010) Plagiochin E, an antifungal active macrocyclic bis (bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim Biophys Acta Gen Subj 1800:439–447

  • Yang Y, Teng D, Zhang J, Tian Z, Wang S, Wang J (2011) Characterization of recombinant plectasin: Solubility, antimicrobial activity and factors that affect its activity. Process Biochem 46:1050–1055

    Article  CAS  Google Scholar 

  • Zhang J, Yang Y, Teng D, Tian Z, Wang S, Wang J (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr Purif 78:189–196

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Teng D, Mao R, Wang X, Xi D, Hu X, Wang J (2014) High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl Microbiol Biotechnol 98(2):681–694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Tong Zhao and Jingnan Liang from the Core Facility at the Institute of Microbiology at the Chinese Academy of Sciences (CAS) for their technical support with the flow cytometric and TEM analyses and Jing Wu from the Institute of Genetics and Developmental Biology at CAS for her coordination of the confocal fluorescence microscopy analysis. This study was supported by the National Natural Science Foundation of China (No. 31372346, No. 31302004, and No. 30972125), the Project of the National Support Program for Science and Technology in China (No. 2013BAD10B02 and No. 2011BAD26B02), and the AMP Direction of Innovation Program of Agric Sci & Tech in CAAS (2013–2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Additional information

Xiaojie Wang and Xiumin Wang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, X., Teng, D. et al. Candidacidal mechanism of the arenicin-3-derived peptide NZ17074 from Arenicola marina . Appl Microbiol Biotechnol 98, 7387–7398 (2014). https://doi.org/10.1007/s00253-014-5784-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5784-6

Keywords

Navigation