Skip to main content
Log in

Membranolytic antifungal activity of arenicin-1 requires the N-terminal tryptophan and the beta-turn arginine

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

To determine the structural requirements of arenicin-1 in exerting antifungal activity, a truncated peptide with an N-terminal deletion and a peptide with an Ala substitution for an Arg in the beta-turn region were characterised by comparison to arenicin-1. The antifungal activities of the analogues were 25–50% lower than arenicin-1. Trp fluorescence and circular dichroism spectroscopy showed that Trp in the N-terminus contributed to peptide penetration and Arg in the beta-turn to conformational transition. These results suggest that Trp in the N-terminus and Arg in the beta-turn play a pivotal role in the membrane-directed antifungal activity of arenicin-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrä J, Jakovkin I, Grötzinger J, Hecht O, Krasnosdembskaya AD, Goldmann T, Gutsmann T, Leippe M (2008) Structure and mode of action of the antimicrobial peptide arenicin. Biochem J 410:113–122

    Article  PubMed  Google Scholar 

  • Hall K, Aguilar MI (2009) Membrane interactions of antimicrobial beta-peptides: the role of amphipathicity versus secondary structure induction. Biopolymers 92:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hwang JS, Lee J, Hwang B, Nam SH, Yun EY, Kim SR, Lee DG (2010) Isolation and characterization of Psacotheasin, a novel knottin-type antimicrobial peptide, from Psacothea hilaris. J Microbiol Biotechnol 20:708–711

    CAS  PubMed  Google Scholar 

  • Makovitzki A, Shai Y (2005) pH-dependent antifungal lipopeptides and their plausible mode of action. Biochemistry 44:9775–9784

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB (1986) Solid phase synthesis. Science 232:341–347

    Article  CAS  PubMed  Google Scholar 

  • Park C, Lee DG (2009) Fungicidal effect of antimicrobial peptide arenicin-1. Biochim Biophys Acta-Biomembr 1788:1790–1796

    Article  CAS  Google Scholar 

  • Persson S, Killian JA, Lindblom G (1998) Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2H-NMR. Biophys J 75:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Rao AG (1999) Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. Arch Biochem Biophys 361:127–134

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi AC, Di Giulio A, Liberi M, Gualtieri G, Oratore A, Bozzi A, Schininà ME, Simmaco M (2001) Effects of temporins on molecular dynamics and membrane permeabilization in lipid vesicles. J Pept Res 58:213–220

    Article  CAS  PubMed  Google Scholar 

  • Sheppard R (2003) The fluorenylmethoxycarbonyl group in solid phase synthesis. J Pept Sci 9:545–552

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Waring AJ, Hong M (2008) Arginine dynamics in a membrane-bound cationic beta-hairpin peptide from solid-state NMR. Chembiochem 16:1487–1492

    Article  Google Scholar 

  • Tang M, Waring AJ, Hong M (2009) Effects of arginine density on the membrane-bound structure of a cationic antimicrobial peptide from solid-state NMR. Biochim Biophys Acta-Biomembr 1788:514–521

    Article  CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Kinnunen PK (2002) Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J Biol Chem 277:25170–25177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Marine and Extreme Genome Research Center Program of the Ministry of Land, Transportation and Maritime Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C., Cho, J., Lee, J. et al. Membranolytic antifungal activity of arenicin-1 requires the N-terminal tryptophan and the beta-turn arginine. Biotechnol Lett 33, 185–189 (2011). https://doi.org/10.1007/s10529-010-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0402-x

Keywords

Navigation