Skip to main content
Log in

Defining the caprine γδ T cell WC1 multigenic array and evaluation of its expressed sequences and gene structure conservation among goat breeds and relative to cattle

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Workshop cluster 1 (WC1) molecules are part of the scavenger receptor cysteine-rich (SRCR) superfamily and act as hybrid co-receptors for the γδ T cell receptor and as pattern recognition receptors for binding pathogens. These members of the CD163 gene family are expressed on γδ T cells in the blood of ruminants. While the presence of WC1+ γδ T cells in the blood of goats has been demonstrated using monoclonal antibodies, there was no information available about the goat WC1 gene family. The caprine WC1 multigenic array was characterized here for number, structure and expression of genes, and similarity to WC1 genes of cattle and among goat breeds. We found sequence for 17 complete WC1 genes and evidence for up to 30 SRCR a1 or d1 domains which represent distinct signature domains for individual genes. This suggests substantially more WC1 genes than in cattle. Moreover, goats had seven different WC1 gene structures of which 4 are unique to goats. Caprine WC1 genes also had multiple transcript splice variants of their intracytoplasmic domains that eliminated tyrosines shown previously to be important for signal transduction. The most distal WC1 SRCR a1 domains were highly conserved among goat breeds, but fewer were conserved between goats and cattle. Since goats have a greater number of WC1 genes and unique WC1 gene structures relative to cattle, goat WC1 molecules may have expanded functions. This finding may impact research on next-generation vaccines designed to stimulate γδ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARS1:

Agricultural research service 1

BR:

Boer

ICD:

Intracytoplasmic domains

ID:

Interdomain

IFNγ:

Interferon-γ

IL:

Interleukin

MHC:

Major histocompatibility complex

PBMC:

Peripheral blood mononuclear cells

PCR:

Polymerase chain reaction

PRR:

Pattern recognition receptor

SC:

San Clemente

SRCR:

Scavenger receptor cysteine-rich

TCR:

T cell receptor

WC1:

Workshop cluster 1

YN:

Yunnan

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aziz MA (2010) Present status of the world goat populations and their productivity. World 861:1

    Google Scholar 

  • Bah T (2011) Inkscape: guide to a vector drawing program. Prentice Hall Press, New Jersey

    Google Scholar 

  • Baldwin CL, Yirsaw A, Gillespie A, Le Page L, Zhang F, Damani-Yokota P, Telfer JC (2019a) gammadelta T cells in livestock: responses to pathogens and vaccine potential. Transbound Emerg Dis. https://doi.org/10.1111/tbed.13328

    Article  PubMed  Google Scholar 

  • Baldwin CL, Yirsaw A, Gillespie A, Le Page L, Zhang F, Damani-Yokota P, Telfer JC (2019b) gammadelta T cells in livestock: responses to pathogens and vaccine potential. Transbound Emerg Dis

  • Baron J, Bin-Tarif A, Herbert R, Frost L, Taylor G, Baron MD (2014) Early changes in cytokine expression in peste des petits ruminants disease. Vet Res 45:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J, Lam ET, Liachko I, Sullivan ST, Burton JN (2017) Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 49:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bwibo NO, Neumann GG (2003) The need for animal source foods by Kenyan children. J Nutr 133:3936S–3940S

    Article  CAS  PubMed  Google Scholar 

  • Campbell MS, Holt C, Moore B, Yandell M (2014) Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinformatics 48:4–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Herzig CT, Alexander LJ, Keele JW, McDaneld TG, Telfer JC, Baldwin CL (2012) Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes. BMC Genet 13:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Hsu H, Hudgens E, Telfer JC, Baldwin CL (2014) Signal transduction by different forms of the gammadelta T cell-specific pattern recognition receptor WC1. J Immunol 193:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien YH, Bonneville M (2006) Gamma delta T cell receptors. Cell Mol Life Sci 63:2089–2094

    Article  CAS  PubMed  Google Scholar 

  • Chien YH, Meyer C, Bonneville M (2014) γδ T cells: first line of defense and beyond. Annu Rev Immunol 32:121–155

    Article  CAS  PubMed  Google Scholar 

  • Damani-Yokota P, Gillespie A, Pasman Y, Merico D, Connelley TK, Kaushik A, Baldwin CL (2018a) Bovine T cell receptors and gammadelta WC1 co-receptor transcriptome analysis during the first month of life. Dev Comp Immunol 88:190–199

    Article  CAS  PubMed  Google Scholar 

  • Damani-Yokota P, Telfer JC, Baldwin CL (2018b) Variegated transcription of the WC1 hybrid PRR/Co- receptor genes by individual gammadelta T cells and correlation with pathogen responsiveness. Front Immunol 9:717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis M, Chien Y (2003) T-cell antigen receptors. In: Paul WEE (ed) Fundamental immunology. Lippincott Williams & Wilkins, Philadelphia, pp 227–258

    Google Scholar 

  • Davis WC, Brown WC, Hamilton MJ, Wyatt CR, Orden JA, Khalid AM, Naessens J (1996) Analysis of monoclonal antibodies specific for the γδ TcR. Vet Immunol Immunopathol 52(4):275–283

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J, Chen W (2013) Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol 31:135–141

    Article  CAS  PubMed  Google Scholar 

  • Duguma G, Mirkena T, Haile A, Okeyo AM, Tibbo M, Rischkowsky B, Solkner J, Wurzinger M (2011) Identification of smallholder farmers and pastoralists’ preferences for sheep breeding traits: choice model approach. Animal 5:1984–1992

    Article  CAS  PubMed  Google Scholar 

  • End C, Bikker F, Renner M, Bergmann G, Lyer S, Blaich S, Hudler M, Helmke B, Gassler N, Autschbach F, Ligtenberg AJ, Benner A, Holmskov U, Schirmacher P, Nieuw Amerongen AV, Rosenstiel P, Sina C, Franke A, Hafner M, Kioschis P, Schreiber S, Poustka A, Mollenhauer J (2009) DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands. Eur J Immunol 39:833–842

    Article  CAS  PubMed  Google Scholar 

  • Esteves I, Walravens K, Vachiery N, Martinez D, Letesson JJ, Totte P (2004) Protective killed Ehrlichia ruminantium vaccine elicits IFN-gamma responses by CD4+ and CD8+ T lymphocytes in goats. Vet Immunol Immunopathol 98:49–57

    Article  CAS  PubMed  Google Scholar 

  • Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, Vloet RP, Dijkstra CD, van den Berg TK (2009) The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113:887–892

    Article  CAS  PubMed  Google Scholar 

  • Gewa CA, Weiss RE, Bwibo NO, Whaley S, Sigman M, Murphy SP, Harrison G, Neumann CG (2009) Dietary micronutrients are associated with higher cognitive function gains among primary school children in rural Kenya. Br J Nutr 101:1378–1387

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hanby-Flarida MD, Trask OJ, Yang TJ, Baldwin CL (1996) Modulation of WC1, a lineage-specific cell surface molecule of gamma/delta T cells augments cellular proliferation. Immunology 88:116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedges JF, Cockrell D, Jackiw L, Meissner N, Jutila MA (2003) Differential mRNA expression in circulating gammadelta T lymphocyte subsets defines unique tissue-specific functions. J Leukoc Biol 73:306–314

    Article  CAS  PubMed  Google Scholar 

  • Herzig CT, Baldwin CL (2009) Genomic organization and classification of the bovine WC1 genes and expression by peripheral blood gamma delta T cells. BMC Genomics 10:191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herzig CT, Waters RW, Baldwin CL, Telfer JC (2010) Evolution of the CD163 family and its relationship to the bovine gamma delta T cell co-receptor WC1. BMC Evol Biol 10:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higgins JL, Bowen RA, Gonzalez-Juarrero M (2018) Cell mediated immune response in goats after experimental challenge with the virulent Brucella melitensis strain 16M and the reduced virulence strain Rev. 1. Vet Immunol Immunopathol 202:74–84

    Article  CAS  PubMed  Google Scholar 

  • Holderness J, Hedges JF, Ramstead A, Jutila MA (2013) Comparative biology of gammadelta T cell function in humans, mice, and domestic animals. Annu Rev Anim Biosci 1:99–124

    Article  PubMed  CAS  Google Scholar 

  • Hsu H, Baldwin CL, Telfer JC (2015a) The endocytosis and signaling of the gammadelta T cell coreceptor WC1 are regulated by a dileucine motif. J Immunol 194:2399–2406

    Article  CAS  PubMed  Google Scholar 

  • Hsu H, Chen C, Nenninger A, Holz L, Baldwin CL, Telfer JC (2015b) WC1 is a hybrid gammadelta TCR coreceptor and pattern recognition receptor for pathogenic bacteria. J Immunol 194:2280–2288

    Article  CAS  PubMed  Google Scholar 

  • Jolly PE, Gangopadhyay A, Chen S, Reddy PG, Weiss HL, Sapp WJ (1997) Changes in the leukocyte phenotype profile of goats infected with the caprine arthritis encephalitis virus. Vet Immunol Immunopathol 56:97–106

    Article  CAS  PubMed  Google Scholar 

  • Kanan JH, Nayeem N, Binns RM, Chain BM (1997) Mechanisms for variability in a member of the scavenger-receptor cysteine-rich superfamily. Immunogenetics 46:276–282

    Article  CAS  PubMed  Google Scholar 

  • Kawooya KE (2011) The impact of diseases on goat productivity in Sembabule District. Makerere University, Kampala, Uganda

    Google Scholar 

  • Lahmers KK, Hedges JF, Jutila MA, Deng M, Abrahamsen MS, Brown WC (2006) Comparative gene expression by WC1+ gammadelta and CD4+ alphabeta T lymphocytes, which respond to Anaplasma marginale, demonstrates higher expression of chemokines and other myeloid cell-associated genes by WC1+ gammadelta T cells. J Leukoc Biol 80:939–952

    Article  CAS  PubMed  Google Scholar 

  • Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC (2005) The CD4+ T cell immunodominant Anaplasma marginale major surface protein 2 stimulates gammadelta T cell clones that express unique T cell receptors. J Leukoc Biol 77:199–208

    Article  CAS  PubMed  Google Scholar 

  • Lewis SE, Searle SM, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayraktaroglu L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE, Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME (2002) Apollo: a sequence annotation editor. Genome Biol 3, RESEARCH0082

  • Lindberg R, Johansen MV, Nilsson C, Nansen P (1999) An immunohistological study of phenotypic characteristics of cells of the inflammatory response in the intestine of Schistosoma bovis-infected goats. Parasitology 118(Pt 1):91–99

    Article  PubMed  Google Scholar 

  • Mackay CR, Beya MF, Matzinger P (1989) Gamma/delta T cells express a unique surface molecule appearing late during thymic development. Eur J Immunol 19:1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Mackay CR, Hein WR (1989) A large proportion of bovine T cells express the gamma delta T cell receptor and show a distinct tissue distribution and surface phenotype. Int Immunol 1:540–545

    Article  CAS  PubMed  Google Scholar 

  • Mackay CR, Maddox JF, Brandon MR (1986) Three distinct subpopulations of sheep T lymphocytes. Eur J Immunol 16:19–25

    Article  CAS  PubMed  Google Scholar 

  • Matthews KE, Mueller SG, Woods C, Bell DN (2006) Expression of the hemoglobin-haptoglobin receptor CD163 on hematopoietic progenitors. Stem Cells Dev 15:40–48

    Article  CAS  PubMed  Google Scholar 

  • McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Waters WR (2014) Specific recognition of mycobacterial protein and peptide antigens by gammadelta T cell subsets following infection with virulent Mycobacterium bovis. J Immunol 192:2756–2769

    Article  CAS  PubMed  Google Scholar 

  • Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, Nussbaumer O, Polyakova O, Roberts NA, Wesch D, Kabelitz D, Irving PM, John S, Mansour S, Bates PA, Vantourout P, Hayday AC (2018) The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol 19:1352–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann CG, Bwibo NO, Murphy SP, Sigman M, Whaley S, Allen LH, Guthrie D, Weiss RE, Demment MW (2003) Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan school children: background, study design and baseline findings. J Nutr 133:3941S-3949S

    Article  CAS  PubMed  Google Scholar 

  • Neumann CG, Murphy SP, Gewa C, Grillenberger M, Bwibo NO (2007) Meat supplementation improves growth, cognitive, and behavioral outcomes in Kenyan children. J Nutr 137:1119–1123

    Article  CAS  PubMed  Google Scholar 

  • PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, McVicker B, Means TK, Moestrup SK, Post SR, Sawamura T, Silverstein S, Speth RC, Telfer JC, Thiele GM, Wang XY, Wright SD, El Khoury J (2017) A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol 198:3775–3789

    Article  CAS  PubMed  Google Scholar 

  • Price S, Davies M, Villarreal-Ramos B, Hope J (2010) Differential distribution of WC1(+) gammadelta TCR(+) T lymphocyte subsets within lymphoid tissues of the head and respiratory tract and effects of intranasal M. bovis BCG vaccination. Vet Immunol Immunopathol 136:133–137

    Article  CAS  PubMed  Google Scholar 

  • Rogers AN, Vanburen DG, Hedblom EE, Tilahun ME, Telfer JC, Baldwin CL (2005) Gammadelta T cell function varies with the expressed WC1 coreceptor. J Immunol 174:3386–3393

    Article  CAS  PubMed  Google Scholar 

  • Sarrias MR, Gronlund J, Padilla O, Madsen J, Holmskov U, Lozano F (2004) The scavenger receptor cysteine-rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol 24:1–37

    Article  CAS  PubMed  Google Scholar 

  • Sarrias MR, Rosello S, Sanchez-Barbero F, Sierra JM, Vila J, Yelamos J, Vives J, Casals C, Lozano F (2005) A role for human Sp alpha as a pattern recognition receptor. J Biol Chem 280:35391–35398

    Article  CAS  PubMed  Google Scholar 

  • Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J (2019) Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 1–16

  • Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) 2009. Browse: a next-generation genome browser. Genome Res 19:1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamatsu HH, Denyer MS, Stirling C, Cox S, Aggarwal N, Dash P, Wileman TE, Barnett PV (2006) Porcine gammadelta T cells: possible roles on the innate and adaptive immune responses following virus infection. Vet Immunol Immunopathol 112:49–61

    Article  CAS  PubMed  Google Scholar 

  • Telfer JC, Baldwin CL (2015) Bovine gamma delta T cells and the function of gamma delta T cell specific WC1 co-receptors. Cell Immunol 296:76–86

    Article  CAS  PubMed  Google Scholar 

  • Tibbo M, Philipsson J, Ayalew W (2006) Sustainable sheep breeding programmes in the tropics: a framework for Ethiopia. In: Conference on International Agricultural Research for Development, Tropentag, University of Bonn, 3

  • Totte P, Esteves I, Gunter N, Martinez D, Bensaida A (2002) Evaluation of several flow cytometric assays for the analysis of T-cell responses in goats. Cytometry 49:49–55

    Article  PubMed  Google Scholar 

  • Valheim M, Sigurdardottir OG, Storset AK, Aune LG, Press CM (2004) Characterization of macrophages and occurrence of T cells in intestinal lesions of subclinical paratuberculosis in goats. J Comp Pathol 131:221–232

    Article  CAS  PubMed  Google Scholar 

  • Valheim M, Storset AK, Aleksersen M, Brun-Hansen H, Press CM (2002) Lesions in subclinical paratuberculosis of goats are associated with persistent gut-associated lymphoid tissue. J Comp Pathol 127:194–202

    Article  CAS  PubMed  Google Scholar 

  • Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 13:88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vantourout P, Laing A, Woodward MJ, Zlatareva I, Apolonia L, Jones AW, Snijders AP, Malim MH, Hayday AC (2018) Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing gammadelta T cell biology. Proc Natl Acad Sci U S A 115:1039–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vera J, Fenutria R, Canadas O, Figueras M, Mota R, Sarrias MR, Williams DL, Casals C, Yelamos J, Lozano F (2009) The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc Natl Acad Sci U S A 106:1506–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Herzig C, Ozer D, Baldwin CL, Telfer JC (2009a) Tyrosine phosphorylation of scavenger receptor cysteine-rich WC1 is required for the WC1-mediated potentiation of TCR-induced T-cell proliferation. Eur J Immunol 39:254–266

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Herzig CT, Chen C, Hsu H, Baldwin CL, Telfer JC (2011) Scavenger receptor WC1 contributes to the gammadelta T cell response to Leptospira. Mol Immunol 48:801–809

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Herzig CTA, Baldwin CL, Telfer JC (2009b) Scavenger receptor WC1 contributes to gamma delta T cell responses to Leptospira

  • Yirsaw AW, Gillespie A, Britton E, Doerle A, Johnson L, Marston S, Telfer JC, Baldwin CL (2021) Goat γδ T cell subpopulations defined by WC1 gene expression, responses to pathogens and cytokine expression. Dev Comp Immunol 118:103984

  • Zafra R, Perez J, Buffoni L, Martinez-Moreno FJ, Acosta I, Mozos E, Martinez-Moreno A (2013a) Peripheral blood lymphocyte subsets in Fasciola hepatica infected and immunised goats. Vet Immunol Immunopathol 155:135–138

    Article  CAS  PubMed  Google Scholar 

  • Zafra R, Perez-Ecija RA, Buffoni L, Moreno P, Bautista MJ, Martinez-Moreno A, Mulcahy G, Dalton JP, Perez J (2013b) Early and late peritoneal and hepatic changes in goats immunized with recombinant cathepsin L1 and infected with Fasciola hepatica. J Comp Pathol 148:373–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. John Hammond and John Schwartz with advice and assistance for annotation and Ms. Alice Newth and UMass Amherst Veterinary and Animal Sciences undergraduate students working at the farm for their help in blood collection. The USDA is an equal opportunity provider and employer.

Funding

This work was funded by the U.S. Department of Agriculture and National Institute for Food and Agriculture’s Agriculture and Food Research initiative (AFRI-NIFA-USDA) grant no. 2015–06970 and 2016–67015-24913 and the Center for Agriculture, Food, and the Environment and the Department of Veterinary and Animal Sciences at University of Massachusetts Amherst, under project #MAS00572. DB was supported by USDA appropriated project 5090–31000-026–00-D. TS was supported by USDA appropriated project 3040–31000-100–00-D.

Author information

Authors and Affiliations

Authors

Contributions

AY conducted the annotation studies, obtained full-length WC1 cDNA sequences, and identified the splice variants; AG gave technical oversight throughout and conducted phylogenetic analyses; FZ conducted PacBio sequencing of cDNA; TS and DB sequenced and assembled the ARS1 genome; KG developed the computer annotation capabilities; MA and HP obtained full-length cDNA sequences; JT and CB were the co-principal investigators who conceived of the study, obtained funding, and oversaw the analysis of the work and writing of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Cynthia L. Baldwin.

Ethics declarations

Disclaimer

The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

251_2022_1254_MOESM1_ESM.pdf

Supplementary file1 (PDF 1395 KB) Fig. S1. Goat WC1 gene number estimation using Venn diagram summary. All of the unique a1 domains and the single d1 domain sequences were grouped as found in each breed with corresponding names in the compartments within this figure. CHIR2.0 assembly of Yunnan (YN), ARS1 assembly of San Clemente (SC) and Boer (BR) goats. The relationships of a1 domains among goat breeds was made using sequence alignment and phylogenetic trees as shown in Fig. 5. Fig. S2. Alignment of the deduced amino acid sequences of the complete WC1 cDNA sequences. (A) Agarose gels of the amplicons obtained by RT-PCR for WC1 transcripts. Significant bands are indicated with an asterisk on the left-hand gel: lane 1, size markers; lane 2, ICD type I/II, 5800 bp (faint band) and 4400 bp; lane 4, ICD type III, 2900 bp and 2200 bp; right-hand gel: lane 1, size markers; lane 2, ICD type I/II, 4400 bp and 2700 bp. Full-length deduced amino acid sequences of the annotated WC1 genes from the ARS1 San Clemente assembly and WC1 transcript sequences from Boer goat DNA were aligned. Identities are indicated by dots (.), gaps resulting from the alignment are indicated by tildes (~), gaps resulting from lack of cDNA are indicated by dashes (-) and the N nucleotide sequences show as “x” when converted to deduced amino acids. Sequences shown are (B) SCgoatWC1-1-GA vs BRgoatWC1-1-cDNA sequences, (C) SCgoatWC1-9-GA vs BRgoatWC1-9-cDNA sequences, (D) SCgoatWC1-23-GA vs BRgoatWC1-23-cDNA sequences, (E) SCgoatWC1-22-GA vs BRgoatWC1-22-cDNA sequences, (F) SCgoatWC1-13-GA vs BRgoatWC1-13-cDNA sequences, (G) SCgoatWC1-4-GA vs BRgoatWC1-4-cDNA sequences, (H) SCgoatWC1-15-GA vs BRgoatWC1-15-cDNA sequences, and (I) SCgoatWC1-2-GA vs BRgoatWC1-2-cDNA sequences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yirsaw, A.W., Gillespie, A., Zhang, F. et al. Defining the caprine γδ T cell WC1 multigenic array and evaluation of its expressed sequences and gene structure conservation among goat breeds and relative to cattle. Immunogenetics 74, 347–365 (2022). https://doi.org/10.1007/s00251-022-01254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-022-01254-9

Keywords

Navigation