Skip to main content
Log in

Studying backbone torsional dynamics of intrinsically disordered proteins using fluorescence depolarization kinetics

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Intrinsically disordered proteins (IDPs) do not autonomously adopt a stable unique 3D structure and exist as an ensemble of rapidly interconverting structures. They are characterized by significant conformational plasticity and are associated with several biological functions and dysfunctions. The rapid conformational fluctuation is governed by the backbone segmental dynamics arising due to the dihedral angle fluctuation on the Ramachandran ϕ–ψ conformational space. We discovered that the intrinsic backbone torsional mobility can be monitored by a sensitive fluorescence readout, namely fluorescence depolarization kinetics, of tryptophan in an archetypal IDP such as α-synuclein. This methodology allows us to map the site-specific torsional mobility in the dihedral space within picosecond-nanosecond time range at a low protein concentration under the native condition. The characteristic timescale of ~ 1.4 ns, independent of residue position, represents collective torsional dynamics of dihedral angles (ϕ and ψ) of several residues from tryptophan and is independent of overall global tumbling of the protein. We believe that fluorescence depolarization kinetics methodology will find broad application to study both short-range and long-range correlated motions, internal friction, binding-induced folding, disorder-to-order transition, misfolding and aggregation of IDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arya S and Mukhopadhyay S 2014 Ordered water within the collapsed globules of an amyloidogenic intrinsically disordered protein. J. Phys. Chem. B 118 9191–9198

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya M and Mukhopadhyay S 2016 Studying protein misfolding and aggregation by fluorescence spectroscopy. Rev. Fluorescence 2015. 1–27

    Google Scholar 

  • Carugo O and Djinovic´-Carugo K 2013 Half a century of Ramachandran plots. Acta Cryst. D 69 1331–1341

    Article  CAS  Google Scholar 

  • Das RK, Ruff KM and Pappu RV 2015 Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32 102–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Echeverria I, Makarov DE and Papoian GA 2014 Concerted dihedral rotations give rise to internal friction in unfolded proteins. J. Am. Chem. Soc. 136 8708–8713

    Article  PubMed  CAS  Google Scholar 

  • Eliezer D 2009 Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol 19 23–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fierz B, Satzger H, Root C, Gilch P, Zinth W, et al. 2007 Loop formation in unfolded polypeptide chains on the picoseconds to microseconds time scale. Proc. Natl. Acad. Sci. USA 104 2163–2168

    Article  CAS  Google Scholar 

  • Fink AL 2005 Natively unfolded proteins. Curr. Opin. Struct. Biol. 15 35–41

    Article  PubMed  CAS  Google Scholar 

  • Henzler-Wildman K and Kern D 2007 Dynamic personalities of proteins. Nature 450 964–972

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Narang D, Bhasne K, Dalal V, Arya S, et al. 2016 Direct observation of the intrinsic backbone torsional mobility of disordered proteins. Biophys. J. 111 768–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain N, Bhasne K, Hemaswasthi M and Mukhopadhyay S 2013 Structural and dynamical insights into the membrane-bound a-synuclein. PLoS One 8 e83752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain N and Mukhopadhyay S 2014 Applications of fluorescence anisotropy in understanding protein conformational disorder and aggregation. Applied Spectroscopy and the Science of Nanomaterials, Progress in Optical Science and Photonics Ed. P Misra. (Springer)

  • Jensen MR, Ruigrok R and Blackledge M 2013 Describing intrinsically disordered proteins at atomic resolution by NMR. Curr. Opin. Struct. Biol. 23 426–435

    Article  PubMed  CAS  Google Scholar 

  • Karplus M and McCammon JA 1983 Dynamics of proteins: elements and function. Ann. Rev. Biochem. 53 263–300

    Article  Google Scholar 

  • Konrat R 2014 NMR contributions to structural dynamics studies of intrinsically disordered proteins. J. Magn. Reson. 241 74–85

    Article  CAS  Google Scholar 

  • Krishnamoorthy G 2012 Motional dynamics in proteins and nucleic acids control their function: revelation by time-domain fluorescence. Curr. Sci. 102 266–276

    CAS  Google Scholar 

  • Lakowicz JR 2007 Principles of Fluorescence Spectroscopy. Springer, New York

    Google Scholar 

  • Mao AH, Crick SL, Vitalis A, Chicoine CL and Pappu RV 2010 Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 107 8183–8188

    Article  PubMed  CAS  Google Scholar 

  • Millar DP 1996 Time-resolved fluorescence spectroscopy. Curr. Opin. Struct. Biol. 6 637–642

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Krishnan R,  Lemke EA, Lindquist S and Deniz AA 2007 A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl. Acad. Sci. USA 104 2649–2654

    Article  PubMed  CAS  Google Scholar 

  • Parigi G, Rezaei-Ghaleh N, Giachetti A, Becker S, Fernandez C, et al. 2014 Long-range correlated dynamics in intrinsically disordered proteins. J. Am. Chem. Soc. 136 16201–16209

    Article  CAS  Google Scholar 

  • Ramachandran GN and Sasisekharan V 1968 Conformation of polypeptides and proteins. Adv. Protein Chem. 23 283–438

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan C 2001 Ramachandran and his Map. Resonance 6 48–56

    Article  CAS  Google Scholar 

  • Schimmel PR and Flory PJ 1968 Conformational energies and configurational statistics of copolypeptides containing L-proline. J. Mol. Biol. 34 105–120

    Article  PubMed  CAS  Google Scholar 

  • Schuler B, Müller-Späth S, Soranno A and Nettels D 2012 Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol. Biol. 96 21–45

    Google Scholar 

  • Uversky VN 2002 Natively unfolded proteins: A point where biology waits for physics. Protein Science. 11 739–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uversky VN 2003 A Protein-Chameleon: Conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders. J. Biomol. Struct. Dyn. 21 211–234

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN 2013 Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta 1834 932–951

    CAS  Google Scholar 

  • Valeur B 2001 Molecular Fluorescence: Principles and Applications. Wiley-VCH

  • Xue Y and Skrynnikov NR 2011 Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: How fast is segmental diffusion in denatured ubiquitin? J. Am. Chem. Soc. 133 14614–14628

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Science and Technology and the Ministry of Human Resouce Development, Government of India, for the financial support (Centre of Excellence grant to S.M.; INSPIRE fellowship to D.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Mukhopadhyay, S. Studying backbone torsional dynamics of intrinsically disordered proteins using fluorescence depolarization kinetics. J Biosci 43, 455–462 (2018). https://doi.org/10.1007/s12038-018-9766-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9766-1

Keywords

Navigation