Skip to main content
Log in

Some factors affecting the process of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

This review presents the results of studies concerning some factors that affect the process of photoinduced hydroxylaminolysis (PHA) in bacteriorhodopsin (BR) and different BR-based media. We consider the peculiar properties of the PHA reaction in water suspensions of BR and BR-based media depending on variation in PHA ingredients, and in particular the use of O-substituted hydroxylamines instead of hydroxylamine hydrochloride. In addition, we discuss how such factors as preliminary ultra-sonication affect the reaction of PHA in the course of BR bleaching and following the reconstitution of bacterioopsin. All the results are considered from the viewpoint of improving the performance of BR-based media as photosensitive materials for the processing and storage of optical information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Birge RR (1990) Photophysics and molecular electronic applications of the rhodopsins. Rev Phys Chem Soc 41:683–733

    Article  CAS  Google Scholar 

  • Birge RR, Gillespie NB, Izaguirre EW, Kusnetzow A, Lawrence AF, Singh D, Song Q, Schmidt E, Stuart JA, Seetharaman S, Wise K (1999) Biomolecular electronics: protein-based associative processors and volumetric memories. J Phys Chem B 103(49):10746–10766

    Article  CAS  Google Scholar 

  • Druzhko A (2009) Optical characteristics of polymer films based on bacteriorhodopsin for irreversible recording of optical information. Photochem Photobiol 85:614–616

    Article  CAS  PubMed  Google Scholar 

  • Druzhko AB, Dyukova TV (2011) Phototransformations of bacteriorhodopsin and its derivatives in polymer matrices. Trends Photochem Photobiol 13:13–24

    CAS  Google Scholar 

  • Druzhko AB, Pirutin SK (2014) Preliminary ultra-sonication affects the rate of the bacteriorhodopsin bleaching and the effectiveness of the reconstitution process in bacterioopsin. Photochem Photobiol 90:1207–1210

    CAS  PubMed  Google Scholar 

  • Druzhko A, Weetall H (1997) Photoinduced transformation of wild-type and D96N mutant 4-keto-bacteriorhodopsin gelatin films. Thin Solid Films 293:281–284

    Article  CAS  Google Scholar 

  • Druzhko A, Zharmukhamedov S, Vsevolodov N (1986) Photoinduced transformation of 4-keto-bacteriorhodopsin in polymeric matrices (In Russian). Biofizika 31:227–230

    CAS  Google Scholar 

  • Druzhko A, Chamorovsky S, Lukashev Eu, Kononenko N, Vsevolodov N (1995) 4-keto-bacteriorhodopsin films as a promising photochromic and electrochromic biological material. Biosystem 35:129–132

    Article  CAS  Google Scholar 

  • Dyukova T, Druzhko A (2010) Peculiar properties of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media using O-substituted hydroxylamines. Photochem Photobiol 86:1255–1259

    Article  CAS  PubMed  Google Scholar 

  • Dyukova T, Vsevolodov N (1996) Photochromic composition and materials containing bacteriorhodopsin. US Patent No. 5,518,858

  • Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanism. Chem Rev 114:126–163

    Article  CAS  PubMed  Google Scholar 

  • Ganea C, Gergely C, Ludmann K, Varo G (1997) The role of water in the extracellular half channel of bacteriorhodopsin. Biophys J 73:2718–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie NB, Wise KJ, Ren L, Stuart JA, Marcy DL, Hillebrecht J, Li Q, Ramos L, Jordan K, Fyvie S, Birge RR (2002) Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin. J Phys Chem B 106(51):13352–13361

    Article  CAS  Google Scholar 

  • Grote M, Engelhard M, Hegemann P (2014) Of ion pumps, sensors and channels—perspectives on microbial rhodopsins between science and history. Biochim Biophys Acta 1837:533–545

    Article  CAS  PubMed  Google Scholar 

  • Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memory. Chem Rev 100:1755–1776

    Article  CAS  PubMed  Google Scholar 

  • Hirai T, Subramaniam S, Lanyi JK (2009) Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 19:433–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korchemskaya E Ya, Stepanchikov DA, Druzhko AB, Dyukova TV (1999) Mechanisms of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives. J Biol Phys (Cluver Press) 24:201–215

    Article  CAS  Google Scholar 

  • Korchemskaya E, Stepanchikov D, Dyukova T (2000) Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants. Opt Mater 14(2):185–191

    Article  CAS  Google Scholar 

  • Mahyad B, Janfaza S, Hosseini E (2015) Bio-nano hybrid materials based on bacteriorhodopsin: potential applications and future strategies. Adv Colloid Interface Sci 225:194–202

    Article  CAS  PubMed  Google Scholar 

  • Mitsner B, Khodonov A, Zvonkova E, Evstigneeva R (1985) Analogues of retinal: synthesis and interaction with bacterioopsin (in Russian). Bioorg Chem (Moscow) 12:5–53

    Google Scholar 

  • Oesterhelt D, Schumann L (1974) Reconstitution of bacteriorhodopsin. FEBS Lett 44:262–265

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Schumann L, Gruber H (1974) Light-dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an apomembrane. FEBS Lett 44:257–261

    Article  CAS  PubMed  Google Scholar 

  • Ranaghan MJ, Greco JA, Wagner NL, Grewal R, Rangarajan R, Koscielecki JF, Wise KJ, Birge RR (2014) Photochromic bacteriorhodopsin mutant with high holographic efficiency and enhanced stability via a putative self-repair mechanism. ACS Appl Mater Interfaces 6(4):2799–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renthal R, Perez MN (1982) Bleaching of purple membrane with O-substituted hydroxylamines. Photochem Photobiol 36:345–348

    Article  CAS  Google Scholar 

  • Rousso I, Gat Y, Sheves M, Ottolenghi M (1998) Effective light-induced hydroxylamine reactions occur with C13=C14 nonisomerasable bacteriorhodopsin pigments. Biophys J 75:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song QW, Gross RB, Chen Zh, Zhang Ch, Blumer R, Birge RR (1993) Chemically enhanced bacteriorhodopsin thin-film spatial light modulator. Opt Lett 18(16):1373–1375

    Article  CAS  PubMed  Google Scholar 

  • Stepanchikov D, Burykin N, Dyukova T, Ebrey T, Balashov S, Korchemskaya E (2006) Bacteriorhodopsin and its mutants for light-induced anisotropy and dynamic holography recording. Funct Mater 13(4):669–675

    CAS  Google Scholar 

  • Stuart JA, Marcy DL, Birge RR (2001) Photonic and optoelectronic applications of bacteriorhodopsin. In: Der A, Keszthelyi L (eds) Bioelectronic applications of photochromic pigments, IOS Press, pp 16–29

  • Stuart JA, Marcy DL, Wise KJ, Birge RR (2002) Volumetric optical memory based on bacteriorhodopsin. Synth Met 127(1–3):3–15

    Article  CAS  Google Scholar 

  • Subramaniam S, Marti T, Rosselet SJ, Rothschild KJ, Khorana G (1991) The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates. Proc Natl Acad Sci USA 88:2583–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vsevolodov N (1998) Biomolecular electronics—an introduction via photosensitive proteins. Birkháuser, Boston

    Google Scholar 

  • Vsevolodov N, Druzhko A, Dyukova T, Shakhbazyan V (1995) Optical recording material based on bacteriorhodopsin modified with hydroxylamine. SPIE 114:511–520

    Google Scholar 

  • Wagner NL, Greco JA, Ranaghan MJ, Birge RR (2013a) Directed evolution of bacteriorhodopsin for application in bioelectronic. J R Soc Interface 15:20130197

    Article  Google Scholar 

  • Wagner NL, Greco JA, Ranaghan MJ, Birge RR (2013b) Directed evolution of bacteriorhodopsin for applications in bioelectronics. J R Soc Interface 10(84):20130197

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding was provided by Federal Budget of RF (Grant no. 0117-2014-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna B. Druzhko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druzhko, A.B., Dyukova, T.V. & Pirutin, S.K. Some factors affecting the process of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media. Eur Biophys J 46, 509–515 (2017). https://doi.org/10.1007/s00249-017-1211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-017-1211-0

Keywords

Navigation