Skip to main content
Log in

Investigation of spectral and kinetic properties of polymer films based on some analogs of bacteriorhodopsin

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We investigated the characteristics of modified forms of bacteriorhodopsin in which the native retinal chromophore is replaced by a chemical analog (“bacteriorhodopsin analogs”), embedded in a polymer film. We found they displayed differential absorption spectra and kinetic curves for the most long-lived intermediates of the BR photocycle. We also studied the influence of chemical reagents on the functioning of bacteriorhodopsin analogs in polymeric films. We found that the immobilization of BR analogs in polymer leads, as in the case of native BR, to a slowing down of their photocycles. Kinetic analysis showed that M-like state intermediates of all the BR analogs have a longer dark relaxation time than native BR. The retention and retardation of the photocycle in these films suggest that films based on BR analogs can be used as photochromic materials. Moreover, 4-keto BR seems to be more promising for this application as compared not only with native BR, but also with other analogs of BR studied in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aharoni A, Ottolenghi M, Sheves M (2002) Photoreduction of bacteriorhodopsin Schiff base at low humidity. A study with C13=C14 nonisomerizable artificial pigments. Photochem Photobiol 75:668–674

    Article  CAS  Google Scholar 

  • Becher BM, Cassim JY (1975) Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep Biochem 5(2):161–178

    CAS  PubMed  Google Scholar 

  • Birge RR (1990) Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1016(3):293–327

    Article  CAS  Google Scholar 

  • Brown LS, Ernst OP (2017) Recent advances in biophysical studies of rhodopsins—oligomerization, folding, and structure. BBA 1865:1512–1521

    CAS  Google Scholar 

  • Druzhko A, Chamorovsky S (1995) The cycle of photochromic reactions of bacteriorhodopsin analog with 4-keto-retinal. BioSystems 35:133–136

    Article  CAS  Google Scholar 

  • Druzhko AB, Chamorovsky SK, Lukashev EuP, Kononenko AA, Vsevolodov NN (1995) 4-Keto-bacteriorhodopsin films as a promising photochromic and electrochromic biological material. BioSystems 35:129–132

    Article  CAS  Google Scholar 

  • Druzhko AB, Shakhbazian VYu, Alvarez R, de Lera AR, Weetall HH (2001) Photoinduced transformation of 14-F-bacteriorhodopsin gelatin films based on both wild type and D96N mutant. Biosystems 59:53–60

    Article  CAS  Google Scholar 

  • Druzhko AB, Dyukova TV, Pirutin SK (2017) Some factors affecting the process of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media. Eur Biophys J 46(6):509–515

    Article  CAS  Google Scholar 

  • Dyukova T, Vsevolodov N (2017) Photochromic composition and materials containing bacteriorhodopsin. Eur Biophys J 46:509–515

    Article  Google Scholar 

  • Fábián L, Heiner Z, Mero M, Kiss M, Wolff EK, Ormos P, Osvay K, Dér A (2011) Protein-based ultrafast photonic switching. Opt Express 19:18861–18870

    Article  Google Scholar 

  • Fábián L, Mathesz A, Dér A (2015) Acta Biol Szeged 59(Suppl. 2):189–202

    Google Scholar 

  • Friedman N, Ottolenghi M, Sheves M (2003) Heterogeneity effects in the binding of all-trans retinal to bacterio-opsin. Biochemistry 42(38):11281–11288

    Article  CAS  Google Scholar 

  • Ganea C, Gergely C, Ludmann K, Varo G (1997) The role of water in the extracellular half channel of bacteriorhodopsin. Biophys J 73:2718–2725

    Article  CAS  Google Scholar 

  • Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776

    Article  CAS  Google Scholar 

  • Jussila T, Tkachenko NV, Parkkinen S, Lemmetyinen H (2001) Kinetics of photo-active bacteriorhodopsin analog 3,4-didehydroretinal. J Photochem Photobiol B 62:128–132

    Article  CAS  Google Scholar 

  • Knoblauch C, Griep M, Friedrich C (2014) Recent advances in the field of bionanotechnology: an insight into optoelectric bacteriorhodopsin, quantum dots, and noble metal nanoclusters. Sensors 14(10):19731–19766

    Article  Google Scholar 

  • Korchemskaya E Ya, Stepanchikov DA, Druzhko AB, Dyukova TV (1999) Mechanisms of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives. J Biol Phys 24:201–215

    Article  CAS  Google Scholar 

  • Korchemskaya E, Stepanchikov D, Dyukova T (2000) Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants. Opt Mater 14(2):185–191

    Article  CAS  Google Scholar 

  • Korenstein R, Hess B (1977) Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature 1977(270):184–186

    Article  Google Scholar 

  • López S, Rodríguez V, Montenegro J, Saá C, Alvarez R, de Lera AR, Simón R, Lazarova T, Padrós E (2005) Synthesis of N-heteroaryl retinals and their artificial bacteriorhodopsins. ChemBioChem 6:2078–2087

    Article  Google Scholar 

  • Magyari K, Bálint Z, Simon V, Váró G (2006) The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin. J Photochem Photobiol B 85(2):140–144

    Article  CAS  Google Scholar 

  • Mahyad B, Janfaza S, Hosseini E (2015) Bio-nano hybrid materials based on bacteriorhodopsin: potential applications and future strategies. Adv Colloid Interface Sci 225:194–202

    Article  CAS  Google Scholar 

  • Oesterhelt D, Schumann L (1974) Reconstitution of bacteriorhodopsin. FEBS Lett 44:262–265

    Article  CAS  Google Scholar 

  • Oesterhelt D, Schumann L, Gruber H (1974) Light-dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an apomembrane. FEBS Lett 44:257–261

    Article  CAS  Google Scholar 

  • Ormos PL, Fábián L, Oroszi EK, Wolff J, Ramsden J, Dér A (2002) Protein-based integrated optical switching and modulation. Appl Phys Lett 80:4060–4062

    Article  CAS  Google Scholar 

  • Shnyrov V, Zakis A, Borovyagin V (1984) Effect of chemical and genetical modification of bacteriorhodopsin on structural features of purple membrane. Biol Membr 1:349–354 (In Russian)

    CAS  Google Scholar 

  • Singh AK, Manjula D (2003) Bacteriorhodopsin analogs from diphenylpolyene chromophores. Photochem Photobiol 78:503–510

    Article  CAS  Google Scholar 

  • Song QW, Gross RB, Chen Zh, Zhang Ch, Blummer R, Birge RR (1993) Chemically enhanced bacteriorhodopsin thin-film spatial light modulator. Opt Lett 18(16):1373–1375

    Article  CAS  Google Scholar 

  • Stuart JA, Marcy DL, Birge RR (2001) Photonic and optoelectronic applications of bacteriorhodopsin. In: Der A, Keszthelyi L (eds) Bioelectronic applications of photochromic pigments. IOS Press, Amsterdam, pp 16–29

    Google Scholar 

  • Stuart JA, Marcy DL, Wise KJ, Birge RR (2002a) Volumetric optical memory based on bacteriorhodopsin. Synth Met 127(1–3):3–10

    Article  CAS  Google Scholar 

  • Stuart JA, Marcy DL, Wise KJ, Birge RR (2002b) Volumetric optical memory based on bacteriorhodopsin. Synth Met 127(1–3):3–15

    Article  CAS  Google Scholar 

  • Vsevolodov N (1998) Biomolecular electronics an introduction via photosensitive proteins (edited by David Amiel). Birkhauser, Boston-Basel-Berlin, pp 139–142

    Book  Google Scholar 

Download references

Funding

Funding was provided by Federal Budget of RF (Grant No. 0128-2017-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna B. Druzhko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druzhko, A.B., Pirutin, S.K. Investigation of spectral and kinetic properties of polymer films based on some analogs of bacteriorhodopsin. Eur Biophys J 48, 749–756 (2019). https://doi.org/10.1007/s00249-019-01401-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01401-3

Keywords

Navigation