Skip to main content
Log in

K+ channel signaling in irradiated tumor cells

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

K+ channels crosstalk with biochemical signaling cascades and regulate virtually all cellular processes by adjusting the intracellular K+ concentration, generating the membrane potential, mediating cell volume changes, contributing to Ca2+ signaling, and directly interacting within molecular complexes with membrane receptors and downstream effectors. Tumor cells exhibit aberrant expression and activity patterns of K+ channels. The upregulation of highly “oncogenic” K+ channels such as the Ca2+-activated IK channel may drive the neoplastic transformation, malignant progression, metastasis, or therapy resistance of tumor cells. In particular, ionizing radiation in doses used for fractionated radiotherapy in the clinic has been shown to activate K+ channels. Radiogenic K+ channel activity, in turn, contributes to the DNA damage response and promotes survival of the irradiated tumor cells. Tumor-specific overexpression of certain K+ channel types together with the fact that pharmacological K+ channel modulators are already in clinical use or well tolerated in clinical trials suggests that K+ channel targeting alone or in combination with radiotherapy might become a promising new strategy of anti-cancer therapy. The present article aims to review our current knowledge on K+ channel signaling in irradiated tumor cells. Moreover, it provides new data on molecular mechanisms of radiogenic K+ channel activation and downstream signaling events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, Demiryurek AT, Camci C (2015) Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol 36:9209–9213

    Article  CAS  PubMed  Google Scholar 

  • Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, Prieto-Sanchez RM, Barba I, Martinez-Saez E, Prudkin L, Cuartas I, Raventos C, Martinez-Ricarte F, Poca MA, Garcia-Dorado D, Lahn MM, Yingling JM, Rodon J, Sahuquillo J, Baselga J, Seoane J (2010) TGF-β receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668

    Article  CAS  PubMed  Google Scholar 

  • Barone A, Sengupta R, Warrington NM, Smith E, Wen PY, Brekken RA, Romagnoli B, Douglas G, Chevalier E, Bauer MP, Dembowsky K, Piwnica-Worms D, Rubin JB (2014) Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma. Oncotarget 5:9811–9822

    Article  PubMed  PubMed Central  Google Scholar 

  • Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 121:101–117

    Article  CAS  PubMed  Google Scholar 

  • Bayer KU, Schulman H (2001) Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 289:917–923

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  • Braun N, Klumpp D, Hennenlotter J, Bedke J, Duranton C, Bleif M, Huber SM (2015) UCP-3 uncoupling protein confers hypoxia resistance to renal epithelial cells and is upregulated in renal cell carcinoma. Sci Rep 5:13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catacuzzeno L, Aiello F, Fioretti B, Sforna L, Castigli E, Ruggieri P, Tata AM, Calogero A, Franciolini F (2011) Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration. J Cell Physiol 226:1926–1933

    Article  CAS  PubMed  Google Scholar 

  • Catacuzzeno L, Fioretti B, Franciolini F (2012) Expression and role of the intermediate-conductance calcium-activated potassium channel KCa3.1 in glioblastoma. J Signal Transduct 2012:421564. doi:10.1155/2012/421564

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuddapah VA, Sontheimer H (2010) Molecular interaction and functional regulation of ClC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malignant glioma. J Biol Chem 285:11188–11196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuddapah VA, Habela CW, Watkins S, Moore LS, Barclay TT, Sontheimer H (2012) Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. Am J Physiol Cell Physiol 302:C527–C538

    Article  CAS  PubMed  Google Scholar 

  • Cuddapah VA, Turner KL, Seifert S, Sontheimer H (2013) Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3. J Neurosci 33:1427–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R, Rosito M, Grimaldi A, Lauro C, Cantore G, Santoro A, Fioretti B, Franciolini F, Wulff H, Limatola C (2013) KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4:e773. doi:10.1038/cddis.2013.279

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137

    Article  PubMed  Google Scholar 

  • Dittmann K, Mayer C, Kehlbach R, Rothmund MC, Peter Rodemann H (2009) Radiation-induced lipid peroxidation activates src kinase and triggers nuclear EGFR transport. Radiother Oncol 92:379–382

    Article  CAS  PubMed  Google Scholar 

  • Dittmann K, Mayer C, Rodemann HP, Huber SM (2013) EGFR cooperates with glucose transporter SGLT1 to enable chromatin remodeling in response to ionizing radiation. Radiother Oncol 107:247–251

    Article  CAS  PubMed  Google Scholar 

  • Dittmann K, Mayer C, Paasch A, Huber S, Fehrenbacher B, Schaller M, Rodemann HP (2015) Nuclear EGFR renders cells radio-resistant by binding mRNA species and triggering a metabolic switch to increase lactate production. Radiother Oncol 116:431–437

    Article  CAS  PubMed  Google Scholar 

  • Duffy SM, Ashmole I, Smallwood DT, Leyland ML, Bradding P (2015) Orai/CRACM1 and KCa3.1 ion channels interact in the human lung mast cell plasma membrane. Cell Commun Signal 13:32. doi:10.1186/s12964-015-0112-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Edalat L, Stegen B, Klumpp L, Haehl E, Schilbach K, Lukowski R, Kühnle M, Bernhardt G, Buschauer A, Zips D, Ruth P, Huber SM (2016) BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget. doi:10.18632/oncotarget.7423

    PubMed  PubMed Central  Google Scholar 

  • Foller M, Kasinathan RS, Koka S, Lang C, Shumilina E, Birnbaumer L, Lang F, Huber SM (2008) TRPC6 contributes to the Ca2+ leak of human erythrocytes. Cell Physiol Biochem 21:183–192

    Article  PubMed  Google Scholar 

  • Giatromanolaki A, Sivridis E, Kouskoukis C, Gatter KC, Harris AL, Koukourakis MI (2003) Hypoxia-inducible factors 1α and 2α are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res 13:493–501

    Article  CAS  PubMed  Google Scholar 

  • Gibhardt CS, Roth B, Schroeder I, Fuck S, Becker P, Jakob B, Fournier C, Moroni A, Thiel G (2015) X-ray irradiation activates K+ channels via H2O2 signaling. Sci Rep 5:13861. doi:10.1038/srep13861

    Article  PubMed  PubMed Central  Google Scholar 

  • Haribabu B, Richardson RM, Fisher I, Sozzani S, Peiper SC, Horuk R, Ali H, Snyderman R (1997) Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem 272:28726–28731

    Article  CAS  PubMed  Google Scholar 

  • Heise N, Palme D, Misovic M, Koka S, Rudner J, Lang F, Salih HR, Huber SM, Henke G (2010) Non-selective cation channel-mediated Ca2+-entry and activation of Ca2+/calmodulin-dependent kinase II contribute to G2/M cell cycle arrest and survival of irradiated leukemia cells. Cell Physiol Biochem 26:597–608

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Li B, Tang S, Guo H, Li W, Huang X, Yan W, Zou F (2015) Mitochondrial KATP channels control glioma radioresistance by regulating ROS-induced ERK activation. Mol Neurobiol 52:626–637

    Article  CAS  PubMed  Google Scholar 

  • Huber SM (2013) Oncochannels. Cell Calcium 53:241–255

    Article  CAS  PubMed  Google Scholar 

  • Huber SM, Misovic M, Mayer C, Rodemann HP, Dittmann K (2012) EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells. Radiother Oncol 103:373–379

    Article  CAS  PubMed  Google Scholar 

  • Huber SM, Butz L, Stegen B, Klumpp D, Braun N, Ruth P, Eckert F (2013) Ionizing radiation, ion transports, and radioresistance of cancer cells. Front Physiol 4:212. doi:10.3389/fphys.2013.00212

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber SM, Butz L, Stegen B, Klumpp L, Klumpp D, Eckert F (2015) Role of ion channels in ionizing radiation-induced cell death. Biochim Biophys Acta 1848:2657–2664

    Article  CAS  PubMed  Google Scholar 

  • Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ (2012) The brain microenvironment preferentially enhances the radioresistance of CD133+ glioblastoma stem-like cells. Neoplasia 14:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG, Lee JS, Lee SJ, Lee JC, Park MJ (2013) Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 32:209–221

    Article  CAS  PubMed  Google Scholar 

  • Kasinathan RS, Foller M, Lang C, Koka S, Lang F, Huber SM (2007) Oxidation induces ClC-3-dependent anion channels in human leukaemia cells. FEBS Lett 581:5407–5412

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Chang JW, Yun HS, Yang KM, Hong EH, Kim DH, Um HD, Lee KH, Lee SJ, Hwang SG (2010) Chloride intracellular channel 1 identified using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production. Proteomics 10:2589–2604

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim RK, Yoon CH, An S, Hwang SG, Suh Y, Park MJ, Chung HY, Kim IG, Lee SJ (2011) Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. J Cell Sci 124:3084–3094

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Yoo KC, Cui YH, Uddin N, Lim EJ, Kim MJ, Nam SY, Kim IG, Suh Y, Lee SJ (2014) Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett 354:132–141

    Article  CAS  PubMed  Google Scholar 

  • Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp D, Misovic M, Szteyn K, Shumilina E, Rudner J, Huber SM (2016) Targeting TRPM2 channels impairs radiation-induced cell cycle arrest and fosters cell death of T cell leukemia cells in a Bcl-2-dependent manner. Oxid Med Cell Longev 2016:8026702. doi:10.1155/2016/8026702

    Article  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, Talks K, Gatter KC, Harris AL (2002) Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 53:1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG (2010) Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res 70:5679–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F (2012) Radiation-induced reprogramming of breast cancer cells. Stem Cells 30:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lall R, Ganapathy S, Yang M, Xiao S, Xu T, Su H, Shadfan M, Asara JM, Ha CS, Ben-Sahra I, Manning BD, Little JB, Yuan ZM (2014) Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 21:836–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling S, Sheng JZ, Braun AP (2004) The calcium-dependent activity of large-conductance, calcium-activated K+ channels is enhanced by Pyk2- and Hck-induced tyrosine phosphorylation. Am J Physiol Cell Physiol 287:C698–C706

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006a) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Asuncion-Chin M, Liu P, Dopico AM (2006b) CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci 9:41–49

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li Y, Raisch KP (2010) Clotrimazole induces a late G1 cell cycle arrest and sensitizes glioblastoma cells to radiation in vitro. Anticancer Drugs 21:841–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakada M, Nambu E, Furuyama N, Yoshida Y, Takino T, Hayashi Y, Sato H, Sai Y, Tsuji T, Miyamoto KI, Hirao A, Hamada JI (2013) Integrin α3 is overexpressed in glioma stem-like cells and promotes invasion. Br J Cancer 108:2516–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajonk F, Vlashi E (2013) Characterization of the stem cell niche and its importance in radiobiological response. Semin Radiat Oncol 23:237–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Pajonk F, Vlashi E, McBride WH (2010) Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 28:639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palme D, Misovic M, Schmid E, Klumpp D, Salih HR, Rudner J, Huber SM (2013) Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells. Pflugers Arch 465:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Pardo LA, Stühmer W (2008) Eag1: an emerging oncological target. Cancer Res 68:1611–1613

    Article  CAS  PubMed  Google Scholar 

  • Pardo LA, Stühmer W (2014) The roles of K+ channels in cancer. Nat Rev Cancer 14:39–48

    Article  CAS  PubMed  Google Scholar 

  • Pietras A, Katz AM, Ekstrom EJ, Wee B, Halliday JJ, Pitter KL, Werbeck JL, Amankulor NM, Huse JT, Holland EC (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Sengupta R, Choe EJ, Woerner BM, Jackson E, Sun T, Leonard J, Piwnica-Worms D, Rubin JB (2012) CXCL12 mediates trophic interactions between endothelial and tumor cells in glioblastoma. PLoS One 7:e33005. doi:10.1371/journal.pone.0033005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PJ (2015) CXCR4 and glioblastoma. Anticancer Agents Med Chem 16:59–74

    Article  Google Scholar 

  • Roth B, Gibhardt CS, Becker P, Gebhardt M, Knoop J, Fournier C, Moroni A, Thiel G (2015) Low-dose photon irradiation alters cell differentiation via activation of hIK channels. Pflugers Arch 467:1835–1849

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri P, Mangino G, Fioretti B, Catacuzzeno L, Puca R, Ponti D, Miscusi M, Franciolini F, Ragona G, Calogero A (2012) The inhibition of KCa3.1 channels activity reduces cell motility in glioblastoma derived cancer stem cells. PLoS One 7:e47825. doi:10.1371/journal.pone.0047825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sciaccaluga M, Fioretti B, Catacuzzeno L, Pagani F, Bertollini C, Rosito M, Catalano M, D’Alessandro G, Santoro A, Cantore G, Ragozzino D, Castigli E, Franciolini F, Limatola C (2010) CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity. Am J Physiol Cell Physiol 299:C175–C184

    Article  CAS  PubMed  Google Scholar 

  • Shimura T (2011) Acquired radioresistance of cancer and the AKT/GSK3beta/cyclin D1 overexpression cycle. J Radiat Res 52:539–544

    Article  CAS  PubMed  Google Scholar 

  • Skelding KA, Rostas JA, Verrills NM (2011) Controlling the cell cycle: the role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle 10:631–639

    Article  CAS  PubMed  Google Scholar 

  • Sontheimer H (2008) An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood) 233:779–791

    Article  CAS  Google Scholar 

  • Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2:1701–1744

    PubMed  Google Scholar 

  • Stegen B, Butz L, Klumpp L, Zips D, Dittmann K, Ruth P, Huber SM (2015) Ca2+-activated IK K+ channel blockade radiosensitizes glioblastoma cells. Mol Cancer Res 13:1283–1295

    Article  CAS  PubMed  Google Scholar 

  • Steinle M, Palme D, Misovic M, Rudner J, Dittmann K, Lukowski R, Ruth P, Huber SM (2011) Ionizing radiation induces migration of glioblastoma cells by activating BK K+ channels. Radiother Oncol 101:122–126

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai G, Frank B, Mohle R, Weller M, Wick W (2006) Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-β-dependent HIF-1α-mediated induction of CXCL12. Brain 129:2426–2435

    Article  PubMed  Google Scholar 

  • Tamura K, Aoyagi M, Ando N, Ogishima T, Wakimoto H, Yamamoto M, Ohno K (2013) Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neurosurg 119:1145–1155

    Article  PubMed  Google Scholar 

  • Turner KL, Sontheimer H (2014) KCa3.1 modulates neuroblast migration along the rostral migratory stream (RMS) in vivo. Cereb Cortex 24:2388–2400

    Article  PubMed  Google Scholar 

  • Turner KL, Honasoge A, Robert SM, McFerrin MM, Sontheimer H (2014) A proinvasive role for the Ca2+ -activated K+ channel KCa3.1 in malignant glioma. Glia 62:971–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Voets T, Janssens A, Prenen J, Droogmans G, Nilius B (2003) Mg2+-dependent gating and strong inward rectification of the cation channel TRPV6. J Gen Physiol 121:245–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SC, Yu CF, Hong JH, Tsai CS, Chiang CS (2013) Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One 8:e69182. doi:10.1371/journal.pone.0069182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver AK, Olsen ML, McFerrin MB, Sontheimer H (2007) BK channels are linked to inositol 1,4,5-triphosphate receptors via lipid rafts: a novel mechanism for coupling [Ca2+]i to ion channel activation. J Biol Chem 282:31558–31568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfsperger F, Hogh-Binder SA, Schittenhelm J, Psaras T, Ritter V, Bornes L, Huber SM, Jendrossek V, Rudner J (2016) Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis 7:e2039. doi:10.1038/cddis.2015.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wondergem R, Bartley JW (2009) Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci 16:90. doi:10.1186/1423-0127-16-90

    Article  PubMed  PubMed Central  Google Scholar 

  • Yudin Y, Rohacs T (2012) Regulation of TRPM8 channel activity. Mol Cell Endocrinol 353:68–74

    Article  CAS  PubMed  Google Scholar 

  • Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86:1221–1232

    Article  CAS  PubMed  Google Scholar 

  • Zhang GJ, Gao R, Wang JS, Fu JK, Zhang MX, Jin X (2011) Various doses of fractioned irradiation modulates multidrug resistance 1 expression differently through hypoxia-inducible factor 1α in esophageal cancer cells. Dis Esophagus 24:481–488

    Article  PubMed  Google Scholar 

  • Zhou W, Xu Y, Gao G, Jiang Z, Li X (2013) Irradiated normal brain promotes invasion of glioblastoma through vascular endothelial growth and stromal cell-derived factor 1α. Neuroreport 24:730–734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Heidrun Faltin for excellent technical assistance. This work was supported by a grant from the Wilhelm-Sander-Stiftung awarded to SH and PR (2011.083.1). LE was supported by a grant from the Landesgraduierentenförderungsgesetz, Baden-Württemberg. BS and DK were supported by the DFG International Graduate School 1302 (TP T9 SH) and LK by the ICEPHA program of the University of Tübingen and the Robert-Bosch-Gesellschaft für Medizinische Forschung, Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan M. Huber.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

B. Stegen and L. Klumpp contributed equally to this study and thus share first authorship.

Special Issue: Ion Channels, Transporters and Cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegen, B., Klumpp, L., Misovic, M. et al. K+ channel signaling in irradiated tumor cells. Eur Biophys J 45, 585–598 (2016). https://doi.org/10.1007/s00249-016-1136-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1136-z

Keywords

Navigation