Skip to main content

Advertisement

Log in

Scrutinizing microwave effects on glucose uptake in yeast cells

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Taking into account different literature reports on microwave (MW) effects on living organisms, we thoroughly investigated the influence of constant 2.45 GHz MW irradiation on glucose uptake in yeast cells. A Saccharomyces cerevisiae suspension of 2.9 × 108 cells/ml was used in all experiments. A large specific absorption rate of 0.55 W/g of suspension is compensated by efficient external cooling of the reaction vessel, which established a strong non-equilibrium flow of energy through the solution and enabled a constant bulk temperature of 30 °C to within 1 °C during glucose uptake. Comparison of MW effects with control experiments revealed insignificant changes of glucose uptake during the initial stages of the experiment (up to the 10th min). Statistically “notable” differences during the next 20 min of the irradiation were detected corresponding to thermal overheating of 2 °C. Possible specific thermal MW effects may be related to local temperature increase and a large flow of energy throughout the system. The obtained effects show that environmental MW pollution (fortunately) is of too low intensity to provoke metabolic changes in living cells. At the same time, a longer exposure of cells to electromagnetic irradiation may have impacts on biochemical applications and production of valuable biotechnological products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banik S, Bandyopadhyay S, Ganguly S (2003) Bioeffects of microwave—a brief review. Bioresour Technol 87:155–159. doi:10.1016/S0960-8524(02)00169-4

    Article  CAS  PubMed  Google Scholar 

  • Barnes FS, Greenebaum B (2006) Biological and medical aspects of electromagnetic fields. CRC Press, Boca Raton

    Google Scholar 

  • Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704. doi:10.1534/genetics.111.130765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Hoz A, Díaz-Ortiz Á, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178. doi:10.1039/B411438H

    Article  PubMed  Google Scholar 

  • Fröhlich H (1980) The biological effects of microwaves and related questions. In: Marton LM (ed) Advances in electronics and electron physics. Academic Press, London, pp 85–152

    Google Scholar 

  • Grundler W, Keilmann F, Putterlik V, Strube D (1982) Resonant-like dependence of yeast growth rate on microwave frequencies. Br J Cancer Suppl 5:206–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grundler W, Jentzsch U, Keilmann F, Putterlik V (1988) Resonant cellular effects of low intensity microwaves. In: Fröhlich PDH (ed) Biological coherence and response to external stimuli. Springer, Berlin, pp 65–85

    Chapter  Google Scholar 

  • Kappe CO, Stadler A, Dallinger D et al (2012) Microwaves in organic and medicinal chemistry, vol 52, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094. doi:10.1002/anie.201204103

    Article  CAS  Google Scholar 

  • Kozempel M, Cook RD, Scullen OJ, Annous BA (1999) Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature. J Food Process Preserv 24:287–301. doi:10.1111/j.1745-4549.2000.tb00420.x

    Article  Google Scholar 

  • Loupy A, de la Hoz (eds) (2012) Microwaves in organic synthesis, 3rd edn. Wiley VCH, Weinheim

    Google Scholar 

  • Nicolis G (1989) Physics of far-from equilibrium systems and self organization. In: Davies P (ed) The new physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations, 1st edn. Wiley, New York

    Google Scholar 

  • Prigogine I (1968) Introduction to thermodynamics of irreversible processes, 3rd edn. Wiley, New York

    Google Scholar 

  • Rougier C, Prorot A, Chazal P et al (2014) Thermal and nonthermal effects of discontinuous microwave exposure (2.45 Gigahertz) on the cell membrane of Escherichia coli. Appl Environ Microbiol 80:4832–4841. doi:10.1128/AEM.00789-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamis Y, Taube A, Mitik-Dineva N et al (2011) Specific electromagnetic effects of microwave radiation on Escherichia coli. Appl Environ Microbiol 77:3017–3022. doi:10.1128/AEM.01899-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamis Y, Croft R, Taube A et al (2012) Review of the specific effects of microwave radiation on bacterial cells. Appl Microbiol Biotechnol 96:319–325. doi:10.1007/s00253-012-4339-y

    Article  CAS  PubMed  Google Scholar 

  • Stanisavljev DR, Djordjević AR, Likar-Smiljanić VD (2004) Microwave driven Bray-Liebhafsky oscillatory reaction. ChemPhysChem 5:140–144. doi:10.1002/cphc.200300899

    Article  CAS  PubMed  Google Scholar 

  • Stanisavljev DR, Djordjević AR, Likar-Smiljanić VD (2005) Investigation of microwave effects on the oscillatory Bray-Liebhafsky reaction. Chem Phys Lett 412:420–424. doi:10.1016/j.cplett.2005.07.027

    Article  CAS  Google Scholar 

  • Stanisavljev DR, Djordjević AR, Likar-Smiljanić VD (2006) Microwaves and coherence in the Bray-Liebhafsky oscillatory reaction. Chem Phys Lett 423:59–62. doi:10.1016/j.cplett.2006.03.024

    Article  CAS  Google Scholar 

  • Stanisavljev DR, Velikić Z, Veselinović DS et al (2014) Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field. Chem Phys 441:1–4. doi:10.1016/j.chemphys.2014.06.017

    Article  CAS  Google Scholar 

  • Vorst AV, Rosen A, Kotsuka Y (2006) RF/microwave interaction with biological tissues, 1st edn. Wiley-IEEE Press, Hoboken

    Google Scholar 

  • Vrhovac I, Hrascan R, Franekic J (2010) Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7. RadiolOncol 44

Download references

Acknowledgments

This work is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under the projects OI 172015 and III 43004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragomir Stanisavljev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanisavljev, D., Gojgić-Cvijović, G. & Bubanja, I.N. Scrutinizing microwave effects on glucose uptake in yeast cells. Eur Biophys J 46, 25–31 (2017). https://doi.org/10.1007/s00249-016-1131-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1131-4

Keywords

Navigation