Skip to main content
Log in

A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The chloride intracellular channel protein 1 (CLIC1) is unique among eukaryotic ion channels in that it can exist as either a soluble monomer or an integral membrane channel. CLIC1 contains no known membrane-targeting signal sequences and the environmental factors which promote membrane binding of the transmembrane domain (TMD) are poorly understood. Here we report a positively charged motif at the C-terminus of the TMD and show that it enhances membrane partitioning and insertion. A 30-mer TMD peptide was synthesized in which the positively charged motif was replaced by three glutamate residues. The peptide was examined in 2,2,2-trifluoroethanol (TFE), sodium dodecyl sulfate micelles and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using size-exclusion chromatography, far-UV CD, and fluorescence spectroscopy. The motif appears to enhance membrane interaction via electrostatic contacts and functions as an electrostatic plug to anchor the TMD in membranes. In addition, the motif is also involved in orientating the TMD with respect to the cis and trans faces of the membrane. These findings shed light on the intrinsic and environmental factors that promote the spontaneous conversion of CLIC1 from a water-soluble to a membrane-bound protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

CLIC1:

Chloride intracellular channel protein 1

DTNB:

5,5′-Dithio-2-nitrobenzoic acid

DTT:

Dithiothreitol

EEE TMD:

Transmembrane domain of CLIC1 containing Glu49-Glu50-Glu51

λ max :

Emission maximum wavelength

NATA:

N-Acetyl-tryptophanamide

NLS:

Nuclear localization sequence of CLIC4

NRMSD:

Normalized root mean square deviation

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

SDS:

Sodium dodecyl sulfate

TFE:

2,2,2-Trifluoroethanol

TMD:

Transmembrane domain of CLIC1 (residues 24–46)

References

  • Barrera FN, Fendos J, Engelman DM (2012) Membrane physical properties influence transmembrane helix formation. Proc Natl Acad Sci USA 109:14422–14427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-Tal N, Honig B, Miller C, McLaughlin S (1997) Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J 73:1717–1727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dewald AH, Hodges JC, Columbus L (2011) Physical determinants of beta-barrel membrane protein folding in lipid vesicles. Biophys J 100:2131–2140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fanucchi S, Adamson RJ, Dirr HW (2008) Formation of an unfolding intermediate state of soluble chloride intracellular channel protein CLIC1 at acidic pH. Biochemistry 47:11674–11681

    Article  CAS  PubMed  Google Scholar 

  • Gafvelin G, Sakaguchi M, Andersson H, von Heijne G (1997) Topological rules for membrane protein assembly in eukaryotic cells. J Biol Chem 272:6119–6127

    Article  CAS  PubMed  Google Scholar 

  • Gallusser A, Kuhn A (1990) Initial steps in protein membrane insertion. Bacteriophage M13 procoat protein binds to the membrane surface by electrostatic interaction. EMBO J 9:2723–2729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodchild SC, Howell MW, Cordina NM, Littler DR, Breit SN, Curmi PM, Brown LJ (2009) Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane. Eur Biophys J 39:129–138

    Article  CAS  PubMed  Google Scholar 

  • Granseth E, von Heijne G, Elofsson A (2005) A study of the membrane–water interface region of membrane proteins. J Mol Biol 346:377–385

    Article  CAS  PubMed  Google Scholar 

  • Habeeb AF (1972) Reaction of protein sulfhydryl groups with Ellman’s reagent. Methods Enzymol 25C:457–464

    Article  Google Scholar 

  • Heimburg T, Marsh D (1995) Protein surface-distribution and protein–protein interactions in the binding of peripheral proteins to charged lipid membranes. Biophys J 68:536–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hendsch ZS, Tidor B (1994) Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci 3:211–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honig BH, Hubbell WL, Flewelling RF (1986) Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem 15:163–193

    Article  CAS  PubMed  Google Scholar 

  • Johnson JE, Cornell RB (1999) Amphitropic proteins: regulation by reversible membrane interactions (review). Mol Membr Biol 16:217–235

    Article  CAS  PubMed  Google Scholar 

  • Langosch D, Arkin IT (2009) Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 18:1343–1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legg-E'silva D, Achilonu I, Fanucchi S, Stoychev S, Fernandes M, Dirr HW (2012) Role of Arginine 29 and Glutamic Acid 81 Interactions in the Conformational Stability of Human Chloride Intracellular Channel 1. Biochem 51(40):7854–7862

  • Littler DR, Harrop SJ, Fairlie WD, Brown LJ, Pankhurst GJ, Pankhurst S, DeMaere MZ, Campbell TJ, Bauskin AR, Tonini R et al (2004) The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J Biol Chem 279:9298–9305

    Article  CAS  PubMed  Google Scholar 

  • Malik M, Shukla A, Amin P, Niedelman W, Lee J, Jividen K, Phang JM, Ding J, Suh KS, Curmi PM et al (2010) S-nitrosylation regulates nuclear translocation of chloride intracellular channel protein CLIC4. J Biol Chem 285:23818–23828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manceva SD, Pusztai-Carey M, Butko P (2004) Effect of pH and ionic strength on the cytolytic toxin Cyt1A: a fluorescence spectroscopy study. Biochim Biophys Acta 1699:123–130

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin S, Hangyas-Mihalyne G, Zaitseva I, Golebiewska U (2005) Reversible—through calmodulin: electrostatic interactions between basic residues on proteins and acidic lipids in the plasma membrane. Biochem Soc Symp 72:189–198

  • Mishra VK, Palgunachari MN (1996) Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Biochemistry 35:11210–11220

    Article  CAS  PubMed  Google Scholar 

  • Mulgrew-Nesbitt A, Diraviyam K, Wang J, Singh S, Murray P, Li Z, Rogers L, Mirkovic N, Murray D (2006) The role of electrostatics in protein-membrane interactions. Biochim Biophys Acta 1761:812–826

    Article  CAS  PubMed  Google Scholar 

  • Mynott AV, Harrop SJ, Brown LJ, Breit SN, Kobe B, Curmi PM (2011) Crystal structure of importin-alpha bound to a peptide bearing the nuclear localisation signal from chloride intracellular channel protein 4. FEBS J 278:1662–1675

    Article  CAS  PubMed  Google Scholar 

  • Nilsson J, Persson B, von Heijne G (2005) Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins 60:606–616

    Article  CAS  PubMed  Google Scholar 

  • Olivella M, Deupi X, Govaerts C, Pardo L (2002) Influence of the environment in the conformation of alpha-helices studied by protein database search and molecular dynamics simulations. Biophys J 82:3207–3213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peter B, Ngubane NC, Fanucchi S, Dirr HW (2013) Membrane mimetics induce helix formation and oligomerization of the chloride intracellular channel protein 1 transmembrane domain. Biochemistry 52:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Peter B, Polyansky AA, Fanucchi S, Dirr HW (2014) A Lys-Trp cation-pi interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain. Biochemistry 53:57–67

    Article  CAS  PubMed  Google Scholar 

  • Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037

    Article  CAS  PubMed  Google Scholar 

  • Roccatano D, Colombo G, Fioroni M, Mark AE (2002) Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc Natl Acad Sci U S A 99:12179–12184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh H, Ashley RH (2007) CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol Membr Biol 24:41–52

    Article  CAS  PubMed  Google Scholar 

  • Smith SO, Smith CS, Bormann BJ (1996) Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nat Struct Biol 3:252–258

    Article  CAS  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  • Stoychev SH, Nathaniel C, Fanucchi S, Brock M, Li S, Asmus K, Woods VL Jr, Dirr HW (2009) Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry. Biochemistry 48:8413–8421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suh KS, Mutoh M, Nagashima K, Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG, Dumont RA, Levy JM et al (2004) The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem 279:4632–4641

    Article  CAS  PubMed  Google Scholar 

  • van Klompenburg W, Nilsson I, von Heijne G, de Kruijff B (1997) Anionic phospholipids are determinants of membrane protein topology. EMBO J 16:4261–4266

    Article  PubMed Central  PubMed  Google Scholar 

  • von Heijne G (1984) Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J 3:2315–2318

    Google Scholar 

  • von Heijne G, Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174:671–678

    Article  Google Scholar 

  • Wallach DF, Zahler PH (1966) Protein conformations in cellular membranes. Proc Natl Acad Sci U S A 56:1552–1559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallin E, von Heijne G (1995) Properties of N-terminal tails in G-protein coupled receptors: a statistical study. Protein Eng 8:693–698

    Article  CAS  PubMed  Google Scholar 

  • Warton K, Tonini R, Fairlie WD, Matthews JM, Valenzuela SM, Qiu MR, Wu WM, Pankhurst S, Bauskin AR, Harrop SJ et al (2002) Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a pH-dependent two-state process to form chloride ion channels with identical characteristics to those observed in Chinese hamster ovary cells expressing CLIC1. J Biol Chem 277:26003–26011

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  PubMed  Google Scholar 

  • Xia XF, Sui SF (2000) The membrane insertion of trichosanthin is membrane-surface-pH dependent. Biochem J 349(Pt 3):835–841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu D, Lin SL, Nussinov R (1997) Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J Mol Biol 265:68–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of the Witwatersrand, South African National Research Foundation Grant 68898 to H.W.D and South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation (Grant 64788 to H.W.D). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and therefore the National Research Foundation and the Department of Science and Technology do not accept any liability with regard thereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heini W. Dirr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, B., Fanucchi, S. & Dirr, H.W. A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain. Eur Biophys J 43, 405–414 (2014). https://doi.org/10.1007/s00249-014-0972-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0972-y

Keywords

Navigation