Skip to main content

Advertisement

Log in

Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

How the coral microbiome responds to oceanic pH changes due to anthropogenic climate change, including ocean acidification and deliberate artificial alkalization, remains an open question. Here, we applied a 16S profile and GeoChip approach to microbial taxonomic and gene functional landscapes in the coral Galaxea fascicularis under three pH levels (7.85, 8.15, and 8.45) and tested the influence of pH changes on the cell growth of several coral-associated strains and bacterial populations. Statistical analysis of GeoChip-based data suggested that both ocean acidification and alkalization destabilized functional cores related to aromatic degradation, carbon degradation, carbon fixation, stress response, and antibiotic biosynthesis in the microbiome, which are related to holobiont carbon cycling and health. The taxonomic analysis revealed that bacterial species richness was not significantly different among the three pH treatments, but the community compositions were significantly distinct. Acute seawater alkalization leads to an increase in pathogens as well as a stronger taxonomic shift than acidification, which is worth considering when using artificial ocean alkalization to protect coral ecosystems from ocean acidification. In addition, our co-occurrence network analysis reflected microbial community and functional shifts in response to pH change cues, which will further help to understand the functional ecological role of the microbiome in coral resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramsby BD, Hoogenboom MO, Whalan S, Webster NS (2018) Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge. Molecular Ecology 27(8):2124–2137

    Article  CAS  PubMed  Google Scholar 

  2. Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annual Review of Microbiology 70(1):317–340

    Article  CAS  PubMed  Google Scholar 

  3. Lin Z, Chen M, Dong X, Zheng X, Huang H, Xu X, Chen J (2017) Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners. Scientific Reports 7(1):42100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ainsworth TD, Thurber RV, Gates RD (2010) The future of coral reefs: a microbial perspective. Trends in Ecology & Evolution 25(4):233–240

    Article  Google Scholar 

  5. Doney SC, Busch DS, Cooley SR, Kroeker KJ (2020) The impacts of ocean acidification on marine ecosystems and reliant human communities. Annual Review of Environment and Resources 45(1):83–112

    Article  Google Scholar 

  6. Sully S, Burkepile DE, Donovan MK, Hodgson G, van Woesik R (2019) A global analysis of coral bleaching over the past two decades. Nature Communications 10(1):1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marubini F, Ferrier-Pagès C, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27(3):491–499

    Article  Google Scholar 

  8. Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V et al (2022) Climate Change 2022: impacts, adaptation and vulnerability, vol 3056. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge University Press, Cambridge, UK and New York, NY, USA, p 2022

    Google Scholar 

  9. Keller DP, Lenton A, Littleton EW, Oschlies A, Scott V, Vaughan NE (2018) The effects of carbon dioxide removal on the carbon cycle. Current Climate Change Reports 4(3):250–265

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feng EY, Keller DP, Koeve W, Oschlies A (2016) Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification? Environmental Research Letters 11(7):074008

    Article  Google Scholar 

  11. Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, Mason BM, Nebuchina Y, Ninokawa A, Pongratz J, Ricke KL et al (2016) Reversal of ocean acidification enhances net coral reef calcification. Nature 531(7594):362–365

    Article  CAS  PubMed  Google Scholar 

  12. Ilyina T, Wolf-Gladrow D, Munhoven G, Heinze C (2013) Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophysical Research Letters 40(22):5909–5914

    Article  CAS  Google Scholar 

  13. Cripps G, Widdicombe S, Spicer JI, Findlay HS (2013) Biological impacts of enhanced alkalinity in Carcinus maenas. Marine Pollution Bulletin 71(1):190–198

    Article  CAS  PubMed  Google Scholar 

  14. Keller DP, Feng EY, Oschlies A (2014) Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nature Communications 5(1):3304

    Article  PubMed  Google Scholar 

  15. Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E (2012) Changes in coral microbial communities in response to a natural pH gradient. The ISME Journal 6(9):1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. The ISME Journal 5(1):51–60

    Article  PubMed  Google Scholar 

  17. Lin Z, Wang L, Chen M, Zheng X, Chen J (2022) Proteome and microbiota analyses characterizing dynamic coral-algae-microbe tripartite interactions under simulated rapid ocean acidification. Science of The Total Environment 810:152266

    Article  CAS  PubMed  Google Scholar 

  18. Drake JL, Schaller MF, Mass T, Godfrey L, Fu A, Sherrell RM, Rosenthal Y, Falkowski PG (2018) Molecular and geochemical perspectives on the influence of CO2 on calcification in coral cell cultures. Limnology and Oceanography 63(1):107–121

    Article  CAS  Google Scholar 

  19. Liang Y, He Z, Wu L, Deng Y, Li G, Zhou J (2010) Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities. Applied and Environmental Microbiology 76(4):1088–1094

    Article  CAS  PubMed  Google Scholar 

  20. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and environmental microbiology 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biology 12(6):R60

    Article  PubMed  PubMed Central  Google Scholar 

  23. Faust K, Raes J (2016) CoNet app: inference of biological association networks using Cytoscape. F1000Res 5:1519–1519

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li D, Ni H, Jiao S, Lu Y, Zhou J, Sun B, Liang Y (2021) Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. Microbiome 9(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nature Methods 9(11):1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raina J-B, Tapiolas D, Motti CA, Foret S, Seemann T, Tebben J, Willis BL, Bourne DG (2016) Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4:e2275

    Article  PubMed  PubMed Central  Google Scholar 

  27. Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental Pollution 101(3):355–359

    Article  CAS  Google Scholar 

  28. Chekan JR, Cogan DP, Nair SK (2016) Molecular basis for resistance against phosphonate antibiotics and herbicides. MedChemComm 7(1):28–36

    Article  CAS  PubMed  Google Scholar 

  29. Liu B, Zheng D, Zhou S, Chen L, Yang J (2022) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50(D1):D912–d917

    Article  CAS  PubMed  Google Scholar 

  30. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology 5(5):355–362

    Article  CAS  PubMed  Google Scholar 

  31. Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environmental Microbiology 11(8):2148–2163

    Article  CAS  Google Scholar 

  32. O’Brien PA, Smith HA, Fallon S, Fabricius K, Willis BL, Morrow KM, Bourne DG (2018) Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp. Front Microbiol 9:2621. https://doi.org/10.3389/fmicb.2018.02621

  33. Jajm VDW, Allemand D, Ferrier-Pagès C (2018) Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome 6(1):64

    Article  Google Scholar 

  34. Soong JL, Fuchslueger L, Marañon-Jimenez S, Torn MS, Janssens IA, Penuelas J, Richter A (2020) Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology 26(4):1953–1961

    Article  PubMed  Google Scholar 

  35. Overmans S, Nordborg M, Díaz-Rúa R, Brinkman DL, Negri AP, Agustí S (2018) Phototoxic effects of PAH and UVA exposure on molecular responses and developmental success in coral larvae. Aquatic Toxicology 198:165–174

    Article  CAS  PubMed  Google Scholar 

  36. Wall M, Fietzke J, Schmidt GM, Fink A, Hofmann LC, de Beer D, Fabricius KE (2016) Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions. Scientific Reports 6(1):30688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ratzke C, Gore J (2018) Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS biology 16(3):e2004248

    Article  PubMed  PubMed Central  Google Scholar 

  38. MarÍN S, Sanchis V, Ramos AJ, Vinas I, Magan N (1998) Environmental factors, in vitro interactions, and niche overlap between Fusarium moniliforme, F. proliferatum, and F. graminearum, Aspergillus and Penicillium species from maize grain. Mycological Research 102(7):831–837

    Article  Google Scholar 

  39. Upton RN, Checinska Sielaff A, Hofmockel KS, Xu X, Polley HW, Wilsey BJ (2020) Soil depth and grassland origin cooperatively shape microbial community co-occurrence and function. Ecosphere 11(1):e02973

    Article  Google Scholar 

  40. Robinson C, Wallace D, Hyun J-H, Polimene L, Benner R, Zhang Y, Cai R, Zhang R, Jiao N (2018) An implementation strategy to quantify the marine microbial carbon pump and its sensitivity to global change. National Science Review 5(4):474–480

    Article  CAS  Google Scholar 

  41. Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner M, Daims H (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus <i>Nitrospira</i>. Proceedings of the National Academy of Sciences 112(36):11371–11376

    Article  CAS  Google Scholar 

  42. Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL (2020) Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environmental Microbiology 22(6):2124–2139

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Gao Z-M, Li J-T, Bougouffa S, Tian RM, Bajic VB, Qian P-Y (2016) Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments. Science Bulletin 61(15):1176–1186

    Article  CAS  Google Scholar 

  44. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Computational Biology 8(7):e1002606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cazelles K, Araújo MB, Mouquet N, Gravel D (2016) A theory for species co-occurrence in interaction networks. Theoretical Ecology 9(1):39–48

    Article  Google Scholar 

Download references

Data Availability

GeoChip metadata have been deposited in the Gene Expression Omnibus (GEO) database under accession codes GSE182928 and GPL30559. Raw 16S high-throughput sequencing data have been deposited in the NCBI database under accession number PRJNA594758. The 16S rDNA sequences of all representative isolates in this study have been deposited in GenBank under accession numbers MZ950544-MZ950604.

Funding

This research was financially supported by the Natural Science Foundation of China (NSFC-41906094), the Fujian Provincial Science and Technology Project (Grants 2020N5011) and the Fujian Provincial Natural Resources Science and Technology Innovation Project (Grants KY-090000-04-2022-006).

Author information

Authors and Affiliations

Authors

Contributions

Zhenyue Lin and Jianming Chen conceived and designed the study. Zhenyue Lin and Xinqing Zheng contributed to designing and optimizing the pH-stat CO2/N2 dosing systems. Zhenyue Lin wrote the manuscript.

Corresponding authors

Correspondence to Zhenyue Lin or Jianming Chen.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Supplementary information

Supplementary material 1

Table S1. Significance tests of the functional gene structure of the microbial communities among the three pH treatment groups. Three different permutation tests were performed, i.e., an MRPP, an ANOSIM, and an ADONIS, based on the Bray–Curtis or Jaccard distance. Table S2. Shannon, Pielou and Simpson indices representing α diversity for the 16S- profiles; there were no significant differences among the three pH treatment groups (p>0.05, Kruskal–Wallis test). Table S3. Number of isolates and taxonomy listings obtained from the multiple carbon source culture media employed. Table S4. Information on 74 isolates that were recovered from the coral G. fascicularis. Table S5. Effects of different media pH values on the doubling time of the selected representative bacterial isolates. Table S6. Effects of different media and pH values on the doubling time of culturable bacterial population growth.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Zheng, X. & Chen, J. Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis. Microb Ecol 86, 1856–1868 (2023). https://doi.org/10.1007/s00248-023-02183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02183-0

Keywords

Navigation