Skip to main content
Log in

A Comprehensive Insight of Current and Future Challenges in Large-Scale Soil Microbiome Analyses

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In the last decade, various large-scale projects describing soil microbial diversity across large geographical gradients have been undertaken. However, many questions remain unanswered about the best ways to conduct these studies. In this review, we present an overview of the experience gathered during these projects, and of the challenges that future projects will face, such as standardization of protocols and results, considering the temporal variation of microbiomes, and the legal constraints limiting such studies. We also present the arguments for and against the exhaustive description of soil microbiomes. Finally, we look at future developments of soil microbiome studies, notably emphasizing the important role of cultivation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubey A, Malla MA, Khan F et al (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429. https://doi.org/10.1007/s10531-019-01760-5

    Article  Google Scholar 

  2. Dastogeer KMG, Tumpa FH, Sultana A et al (2020) Plant microbiome—an account of the factors that shape community composition and diversity. Curr Plant Biol 23:100161. https://doi.org/10.1016/j.cpb.2020.100161

    Article  Google Scholar 

  3. de Faria MR, Costa LSAS, Chiaramonte JB et al (2021) The rhizosphere microbiome: functions, dynamics, and role in plant protection. Trop Plant Pathol 46:13–25. https://doi.org/10.1007/s40858-020-00390-5

    Article  Google Scholar 

  4. Ghannam RB, Techtmann SM (2021) Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput Struct Biotechnol J 19:1092–1107. https://doi.org/10.1016/j.csbj.2021.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dubilier N, McFall-Ngai M, Zhao L (2015) Microbiology: create a global microbiome effort. Nature 526:631–634. https://doi.org/10.1038/526631a

    Article  CAS  PubMed  Google Scholar 

  6. Staley C, Sadowsky MJ (2018) Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies. J Microbiol Methods 154:14–18. https://doi.org/10.1016/j.mimet.2018.09.020

    Article  CAS  PubMed  Google Scholar 

  7. Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219. https://doi.org/10.1146/annurev-virology-101416-041639

    Article  CAS  PubMed  Google Scholar 

  8. Geisen S, Mitchell EAD, Adl S et al (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42:293–323. https://doi.org/10.1093/femsre/fuy006

    Article  CAS  PubMed  Google Scholar 

  9. Dickey JR, Swenie RA, Turner SC et al (2021) The utility of macroecological rules for microbial biogeography. Front Ecol Evol 9:633155. https://doi.org/10.3389/fevo.2021.633155

    Article  Google Scholar 

  10. Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688

    Article  CAS  PubMed  Google Scholar 

  11. Větrovský T, Kohout P, Kopecký M et al (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun 10:5142. https://doi.org/10.1038/s41467-019-13164-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Griffiths RI, Thomson BC, Plassart P et al (2016) Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets. Appl Soil Ecol 97:61–68. https://doi.org/10.1016/j.apsoil.2015.06.018

    Article  Google Scholar 

  13. Hermans SM, Buckley HL, Case BS et al (2020) Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8:79. https://doi.org/10.1186/s40168-020-00858-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bahram M, Hildebrand F, Forslund SK et al (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237. https://doi.org/10.1038/s41586-018-0386-6

    Article  CAS  PubMed  Google Scholar 

  15. Karimi B, Terrat S, Dequiedt S et al (2018) Biogeography of soil bacteria and archaea across France. Sci Adv 4:eaat1808. https://doi.org/10.1126/sciadv.aat1808

    Article  PubMed  PubMed Central  Google Scholar 

  16. The Earth Microbiome Project Consortium, Thompson LR, Sanders JG et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463. https://doi.org/10.1038/nature24621

    Article  CAS  Google Scholar 

  17. Delgado-Baquerizo M, Oliverio AM, Brewer TE et al (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325. https://doi.org/10.1126/science.aap9516

    Article  CAS  PubMed  Google Scholar 

  18. Terrat S, Horrigue W, Dequietd S et al (2017) Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12:e0186766. https://doi.org/10.1371/journal.pone.0186766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baas Becking L (1934) Baas Becking’s geobiology: or introduction to environmental science. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118295472

  20. van der Gast CJ (2015) Microbial biogeography: the end of the ubiquitous dispersal hypothesis?: Microbial biogeography. Environ Microbiol 17:544–546. https://doi.org/10.1111/1462-2920.12635

    Article  PubMed  Google Scholar 

  21. Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N et al (2013) Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun 4:1434. https://doi.org/10.1038/ncomms2431

    Article  CAS  PubMed  Google Scholar 

  22. Guerra CA, Delgado-Baquerizo M, Duarte E et al (2021) Global projections of the soil microbiome in the Anthropocene. Global Ecol Biogeogr 30:987–999. https://doi.org/10.1111/geb.13273

    Article  Google Scholar 

  23. Chu H, Sun H, Tripathi BM et al (2016) Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau: scaling of soil bacteria community diversity. Environ Microbiol 18:1523–1533. https://doi.org/10.1111/1462-2920.13236

    Article  CAS  PubMed  Google Scholar 

  24. Praeg N, Pauli H, Illmer P (2019) Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-alpine altitudinal gradient. Front Microbiol 10:1429. https://doi.org/10.3389/fmicb.2019.01429

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schloss PD (2018) Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 9:e00525-18. https://doi.org/10.1128/mBio.00525-18 (/mbio/9/3/mBio.00525-18.atom)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sakowski E, Uritskiy G, Cooper R, et al (2019) Current state of and future opportunities for prediction in microbiome research: report from the Mid-Atlantic microbiome meet-up in Baltimore on 9 January 2019. mSystems 4. https://doi.org/10.1128/mSystems.00392-19

  27. Ravel J, Wommack KE (2014) All hail reproducibility in microbiome research. Microbiome 2:8. https://doi.org/10.1186/2049-2618-2-8 (2049-2618-2–8)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tedersoo L, Ramirez KS, Nilsson RH et al (2015) Standardizing metadata and taxonomic identification in metabarcoding studies. GigaSci 4:34. https://doi.org/10.1186/s13742-015-0074-5

    Article  CAS  Google Scholar 

  29. Dickie IA, Boyer S, Buckley HL et al (2018) Towards robust and repeatable sampling methods in eDNA -based studies. Mol Ecol Resour 18:940–952. https://doi.org/10.1111/1755-0998.12907

    Article  Google Scholar 

  30. Nesme J, Achouak W, Agathos SN et al (2016) Back to the future of soil metagenomics. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00073

  31. Gilbert JA, Jansson JK, Knight R (2018) Earth microbiome project and global systems Biology. mSystems 3. https://doi.org/10.1128/mSystems.00217-17

  32. Berg G, Rybakova D, Fischer D et al (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103. https://doi.org/10.1186/s40168-020-00875-0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yilmaz P, Kottmann R, Field D et al (2011) Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29:415–420. https://doi.org/10.1038/nbt.1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitchell AL, Scheremetjew M, Denise H et al (2018) EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res 46:D726–D735. https://doi.org/10.1093/nar/gkx967

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez A, Navas-Molina JA, Kosciolek T et al (2018) Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods 15:796–798. https://doi.org/10.1038/s41592-018-0141-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitchell AL, Almeida A, Beracochea M, et al (2019) MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res gkz1035. https://doi.org/10.1093/nar/gkz1035

  37. McDonald D, Clemente JC, Kuczynski J et al (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaSci 1:7. https://doi.org/10.1186/2047-217X-1-7

    Article  Google Scholar 

  38. Rainey PB, Quistad SD (2020) Toward a dynamical understanding of microbial communities. Phil Trans R Soc B 375:20190248. https://doi.org/10.1098/rstb.2019.0248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Äijö T, Müller CL, Bonneau R (2018) Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing. Bioinformatics 34:372–380. https://doi.org/10.1093/bioinformatics/btx549

    Article  CAS  PubMed  Google Scholar 

  40. Hannula SE, Kielak AM, Steinauer K, et al (2019) Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. mBio 10. https://doi.org/10.1128/mBio.02635-19

  41. Silverman JD, Shenhav L, Halperin E et al (2018) Statistical considerations in the design and analysis of longitudinal microbiome studies. BioRxiv. https://doi.org/10.1101/448332

  42. Zhang K, Delgado-Baquerizo M, Zhu Y-G, Chu H (2020) Space is more important than season when shaping soil microbial communities at a large spatial scale. mSystems 5. https://doi.org/10.1128/mSystems.00783-19

  43. Díaz M, Jarrín-V P, Simarro R et al (2021) The Ecuadorian Microbiome Project: a plea to strengthen microbial genomic research. Neotropical Biodivers 7:223–237. https://doi.org/10.1080/23766808.2021.1938900

    Article  Google Scholar 

  44. Greiber T (2012) An explanatory guide to the Nagoya protocol on access and benefit-sharing. IUCN, Gland

    Google Scholar 

  45. Sollberger K (2020) The human microbiome and the Nagoya protocol: a challenging implementation. Commissioned by: Federal Office for the Environment (FOEN), Soil and Biotechnology Division, CH- 3003 Bern

  46. Roy RN, Roy RN (2006) Plant nutrition for food security: a guide for integrated nutrient management. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  47. IMG/M Data Consortium, Nayfach S, Roux S et al (2021) A genomic catalog of Earth’s microbiomes. Nat Biotechnol 39:499–509. https://doi.org/10.1038/s41587-020-0718-6

    Article  CAS  Google Scholar 

  48. Delgado-Baquerizo M (2019) Obscure soil microbes and where to find them. ISME J 13:2120–2124. https://doi.org/10.1038/s41396-019-0405-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wild S (2016) Quest to map Africa’s soil microbiome begins. Nature 539:152–152. https://doi.org/10.1038/539152a

    Article  CAS  PubMed  Google Scholar 

  50. Pylro VS, Mui TS, Rodrigues JLM et al (2016) A step forward to empower global microbiome research through local leadership. Trends Microbiol 24:767–771. https://doi.org/10.1016/j.tim.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  51. Amir A, McDonald D, Navas-Molina JA, et al (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2. https://doi.org/10.1128/mSystems.00191-16

  52. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Westcott SL, Schloss PD (2015) De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3:e1487. https://doi.org/10.7717/peerj.1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmidt TSB, Matias Rodrigues JF, von Mering C (2014) Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale. PLoS Comput Biol 10:e1003594. https://doi.org/10.1371/journal.pcbi.1003594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. García-Jiménez B, Muñoz J, Cabello S et al (2021) Predicting microbiomes through a deep latent space. Bioinformatics 37:1444–1451. https://doi.org/10.1093/bioinformatics/btaa971

    Article  CAS  PubMed  Google Scholar 

  56. Haas R, Zelezniak A, Iacovacci J et al (2017) Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Curr Opin Syst Biol 6:37–45. https://doi.org/10.1016/j.coisb.2017.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  57. Padarian J, Minasny B, McBratney AB (2020) Machine learning and soil sciences: a review aided by machine learning tools. SOIL 6:35–52. https://doi.org/10.5194/soil-6-35-2020

    Article  CAS  Google Scholar 

  58. Chen S, Arrouays D, Leatitia Mulder V et al (2022) Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 409:115567. https://doi.org/10.1016/j.geoderma.2021.115567

    Article  Google Scholar 

  59. Heuvelink GBM, Webster R (2022) Spatial statistics and soil mapping: a blossoming partnership under pressure. Spatial Stat 100639. https://doi.org/10.1016/j.spasta.2022.100639

  60. Huang L, Xu C, Yang W, Yu R (2020) A machine learning framework to determine geolocations from metagenomic profiling. Biol Direct 15:27. https://doi.org/10.1186/s13062-020-00278-z

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bullington LS, Lekberg Y, Larkin BG (2021) Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep 11:3645. https://doi.org/10.1038/s41598-021-83153-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodríguez-Ramos T, Dornelas M, Marañón E, Cermeño P (2014) Conventional sampling methods severely underestimate phytoplankton species richness. J Plankton Res 36:334–343. https://doi.org/10.1093/plankt/fbt115

    Article  Google Scholar 

  63. Jousset A, Bienhold C, Chatzinotas A et al (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11:853–862. https://doi.org/10.1038/ismej.2016.174

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang Y, Hatt JK, Tsementzi D et al (2017) Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem. Appl Environ Microbiol 83. https://doi.org/10.1128/AEM.03321-16

  65. Wei X, Hu Y, Razavi BS et al (2019) Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol Biochem 131:62–70. https://doi.org/10.1016/j.soilbio.2018.12.025

    Article  CAS  Google Scholar 

  66. Nemergut DR, Costello EK, Hamady M et al (2011) Global patterns in the biogeography of bacterial taxa: global bacterial biogeography. Environ Microbiol 13:135–144. https://doi.org/10.1111/j.1462-2920.2010.02315.x

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jiao S, Chen W, Wei G (2017) Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol 26:5305–5317. https://doi.org/10.1111/mec.14218

    Article  CAS  PubMed  Google Scholar 

  68. Liu L, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9:2068–2077. https://doi.org/10.1038/ismej.2015.29

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jiao S, Xu Y, Zhang J, Lu Y (2019) Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7:15. https://doi.org/10.1186/s40168-019-0630-9

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bates ST, Berg-Lyons D, Caporaso JG et al (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. https://doi.org/10.1038/ismej.2010.171

    Article  CAS  PubMed  Google Scholar 

  71. Egidi E, Delgado-Baquerizo M, Plett JM et al (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10:2369. https://doi.org/10.1038/s41467-019-10373-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oliverio AM, Geisen S, Delgado-Baquerizo M et al (2020) The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv 6:eaax8787. https://doi.org/10.1126/sciadv.aax8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zielińska S, Radkowski P, Blendowska A et al (2017) The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis. MicrobiologyOpen 6:e00453. https://doi.org/10.1002/mbo3.453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nelson MB, Martiny AC, Martiny JBH (2016) Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci U S A 113:8033–8040. https://doi.org/10.1073/pnas.1601070113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data: Fig. 1. Bioinformatics 31:2882–2884. https://doi.org/10.1093/bioinformatics/btv287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shah V, Zakrzewski M, Wibberg D et al (2013) Taxonomic profiling and metagenome analysis of a microbial community from a habitat contaminated with industrial discharges. Microb Ecol 66:533–550. https://doi.org/10.1007/s00248-013-0253-9

    Article  PubMed  Google Scholar 

  78. Lemos LN, Mendes LW, Baldrian P, Pylro VS (2021) Genome-resolved metagenomics is essential for unlocking the microbial black box of the soil. Trends Microbiol 29:279–282. https://doi.org/10.1016/j.tim.2021.01.013

    Article  CAS  PubMed  Google Scholar 

  79. Nayfach S, Roux S, Seshadri R et al (2021) A genomic catalog of Earth’s microbiomes. Nat Biotechnol 39:499–509. https://doi.org/10.1038/s41587-020-0718-6

    Article  CAS  PubMed  Google Scholar 

  80. Choi J, Yang F, Stepanauskas R et al (2017) Strategies to improve reference databases for soil microbiomes. ISME J 11:829–834. https://doi.org/10.1038/ismej.2016.168

    Article  PubMed  Google Scholar 

  81. Bru D, Ramette A, Saby NPA et al (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5:532–542. https://doi.org/10.1038/ismej.2010.130

    Article  CAS  PubMed  Google Scholar 

  82. Feng G, Xie T, Wang X et al (2018) Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol 18:11. https://doi.org/10.1186/s12866-018-1152-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. González D, Robas M, Fernández V et al (2022) Comparative metagenomic study of rhizospheric and bulk mercury-contaminated soils in the mining district of Almadén. Front Microbiol 13:797444. https://doi.org/10.3389/fmicb.2022.797444

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pang Z, Dong F, Liu Q et al (2021) Soil metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community. Front Microbiol 12:627569. https://doi.org/10.3389/fmicb.2021.627569

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tracanna V, Ossowicki A, Petrus MLC et al (2021) Dissecting disease-suppressive rhizosphere microbiomes by functional amplicon sequencing and 10× metagenomics. mSystems 6:e01116-20. https://doi.org/10.1128/mSystems.01116-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Azeem M, Soundari PG, Ali A et al (2021) Soil metaphenomics: a step forward in metagenomics. Arch Agron Soil Sci 1–19. https://doi.org/10.1080/03650340.2021.1921743

  87. Naylor D, Fansler S, Brislawn C, et al (2020) Deconstructing the soil microbiome into reduced-complexity functional modules. mBio 11. https://doi.org/10.1128/mBio.01349-20

Download references

Acknowledgements

We thank the OCP Africa team for their helpful comments, and Andrew Blakney for the English editing and commenting to this manuscript. We also thank Stéphane Daigle for his advice on statistical mapping.

Funding

This study received funding from the OCP Innovation (Grant Number: AS-85).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the writing of the review. The first draft of the manuscript was written by Jean Legeay, and Mohamed Hijri commented on and modified previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Jean Legeay.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legeay, J., Hijri, M. A Comprehensive Insight of Current and Future Challenges in Large-Scale Soil Microbiome Analyses. Microb Ecol 86, 75–85 (2023). https://doi.org/10.1007/s00248-022-02060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02060-2

Keywords

Navigation