Skip to main content

Advertisement

Log in

Spatial and Seasonal Patterns of Sediment Bacterial Communities in Large River Cascade Reservoirs: Drivers, Assembly Processes, and Co-occurrence Relationship

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Sediment bacteria play an irreplaceable role in promoting the function and biogeochemical cycle of the freshwater ecosystem; however, little is known about their biogeographical patterns and community assembly mechanisms in large river suffering from cascade development. Here, we investigated the spatiotemporal distribution patterns of bacterial communities employing next-generation sequencing analysis and multivariate statistical analyses from the Lancang River cascade reservoirs during summer and winter. We found that sediment bacterial composition has a significant seasonal turnover due to the modification of cascade reservoirs operation mode, and the spatial consistency of biogeographical models (including distance-decay relationship and covariation of community composition with geographical distance) also has subtle changes. The linear regression between the dissimilarity of bacterial communities in sediments, geographical and environmental distance showed that the synergistic effects of geographical and environmental factors explained the influence on bacterial communities. Furthermore, the environmental difference explained little variations (19.40%) in community structure, implying the homogeneity of environmental conditions across the cascade reservoirs of Lancang River. From the quantification of the ecological process, the homogeneous selection was recognized as the dominating factor of bacterial community assembly. The co-occurrence topological network analyses showed that the key genera were more important than the most connected genera. In general, the assembly of bacterial communities in sediment of cascade reservoirs was mediated by both deterministic and stochastic processes and is always dominated by homogeneous selection with the seasonal switching, but the effects of dispersal limitation and ecological drift cannot be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. All sequence data from Illumina MiSeq sequencing in this study have been submitted to the public NCBI database (http://www.ncbi.nlm.nih.gov/) with the accession number of PRJNA595475.

Code Availability

Not applicable.

References

  1. Ittekkot V (1988) Global trends in the nature of organic matter in river suspensions. Nature 332:436–438

    Article  CAS  Google Scholar 

  2. Meybeck M (1981) Pathways of major elements from land to ocean through rivers. United Nations Press, pp 8–30

  3. Schlesinger HW, Melack JM (1981) Transport of organic carbon in the world’s rivers. Tellus 33:172–187

    CAS  Google Scholar 

  4. Justic, Rabalais, Turner (1995) Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar Coast Shelf Sci 40:339–356

    Article  CAS  Google Scholar 

  5. Syvitski MJP (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  CAS  PubMed  Google Scholar 

  6. Maavara T, Chen Q, Van Meter K, Brown LE, Zhang J, Ni J, Zarfl C (2020) River dam impacts on biogeochemical cycling. Nat Rev Earth Environ 1:103–116. https://doi.org/10.1038/s43017-019-0019-0

    Article  Google Scholar 

  7. Wu H, Chen J, Xu J, Zeng G, Sang L, Liu Q, Yin Z, Dai J, Yin D, Lang J, Ye S (2019) Effects of dam construction on biodiversity: a review. J Clean Prod 221:480–489. https://doi.org/10.1016/j.jclepro.2019.03.001

    Article  Google Scholar 

  8. Liew JH, Tan HH, Yeo DCJ (2016) Dammed rivers: impoundments facilitate fish invasions. Freshw Biol 61:1421–1429. https://doi.org/10.1111/fwb.12781

    Article  Google Scholar 

  9. Kong D, Miao C, Wu J, Borthwick AGL, Duan Q, Zhang X (2017) Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China. Environ Sci Pollut Res 24:4337–4351. https://doi.org/10.1007/s11356-016-7975-4

    Article  CAS  Google Scholar 

  10. Li X-D, Liu C-Q, Liu X-L, Yu J, Liu X-Y (2014) Sources and processes affecting nitrate in a dam-controlled subtropical river, southwest China. Aquat Geochem 20:483–500. https://doi.org/10.1007/s10498-014-9231-1

    Article  CAS  Google Scholar 

  11. Li G, Wang X, Yang Z, Mao C, West AJ, Ji J (2014) Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) river basin (China) a significant carbon sink. J Geophys Res Biogeosci 120.https://doi.org/10.1002/2014JG002646

  12. Chen G, Fang X (2016) Influences of increased daily repeated upstream releases and varying meteorological conditions on temperature distributions in a river-reservoir system. In: Scholz M (ed) International conference on water resource and environment 39:012058

  13. Barbosa FAR, Padisák J, Espíndola ELG, Borics G, Rocha O (1999) The cascading reservoir continuum concept (CRCC) and its application to the river Tietê-basin, São Paulo State, Brazil. pp 425–437

  14. Wang X, Wang C, Wang P, Chen J, Miao L, Feng T, Yuan Q, Liu S (2018) How bacterioplankton community can go with cascade damming in the highly regulated Lancang-Mekong River Basin. Mol Ecol 27:4444–4458. https://doi.org/10.1111/mec.14870

    Article  PubMed  Google Scholar 

  15. Li D, Lu XX, Yang X, Chen L, Lin L (2018) Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: a case study of the Jinsha River. Geomorphology 322:41–52. https://doi.org/10.1016/j.geomorph.2018.08.038

    Article  Google Scholar 

  16. Vo NXQ, Lee S-H, Doan TV, Jung SP, Kang H (2014) Denitrification potential and denitrifier abundance in downstream of dams in temperate streams. Korean J Microbiol 50:137–151. https://doi.org/10.7845/kjm.2014.4021

    Article  Google Scholar 

  17. Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q (2018) Bacterial communities in riparian sediments: a large-scale longitudinal distribution pattern and response to dam construction. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.00999

    Article  Google Scholar 

  18. Bai YH, Shi Q, Wen DH, Li ZX, Jefferson WA, Feng CP, Tang XY (2012) Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China. PLoS ONE 7:10. https://doi.org/10.1371/journal.pone.0037796

    Article  CAS  PubMed Central  Google Scholar 

  19. Xia N, Xia X, Liu T, Hu L, Zhu B, Zhang X, Dong J (2014) Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world. J Soils Sediments 14:1894–1904. https://doi.org/10.1007/s11368-014-0974-5

    Article  CAS  Google Scholar 

  20. Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, Lu L (2018) Shift in the microbial community composition of surface water and sediment along an urban river. Sci Total Environ 627:600–612. https://doi.org/10.1016/j.scitotenv.2018.01.203

    Article  CAS  PubMed  Google Scholar 

  21. Moitra M, Leff LG (2015) Bacterial community composition and function along a river to reservoir transition. Hydrobiologia 747:201–215. https://doi.org/10.1007/s10750-014-2140-x

    Article  CAS  Google Scholar 

  22. Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. The Hague: Van Stockum and Zoon 8:755–758

  23. Crump RC, Adams HE, Hobbie JE, Kling GW (2007) Biogeography of bacterioplankton in lakes and streams of an Arctic tundra catchment. Ecology 88:1365–1378. https://doi.org/10.1890/06-0387

    Article  PubMed  Google Scholar 

  24. Chen LM, Liu ST, Chen Q, Zhu GB, Wu X, Wang JW, Li XF, Hou LJ, Ni JR (2020) Dispersal limitation drives biogeographical patterns of anammox bacterial communities across the Yangtze River. Appl Microbiol Biotechnol 104:5535–5546. https://doi.org/10.1007/s00253-020-10511-4

    Article  CAS  PubMed  Google Scholar 

  25. Mao Y, Liu Y, Li H, He Q, Ai H, Gu W, Yang G (2019) Distinct responses of planktonic and sedimentary bacterial communities to anthropogenic activities: case study of a tributary of the Three Gorges Reservoir, China. Sci Total Environ 682:324–332. https://doi.org/10.1016/j.scitotenv.2019.05.172

    Article  CAS  PubMed  Google Scholar 

  26. Posadas P, Crisci JV, Katinas L (2006) Historical biogeography: a review of its basic concepts and critical issues. J Arid Environ 66:389–403. https://doi.org/10.1016/j.jaridenv.2006.01.004

    Article  Google Scholar 

  27. Zhou J, Yang H, Tang F, Koide RT, Cui M, Liu Y, Sun Q, Insam H, Zhang Q (2017) Relative roles of competition, environmental selection and spatial processes in structuring soil bacterial communities in the Qinghai-Tibetan Plateau. Appl Soil Ecol 117–118:223–232. https://doi.org/10.1016/j.apsoil.2017.05.012

    Article  Google Scholar 

  28. Liu L, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9:2068–2077. https://doi.org/10.1038/ismej.2015.29

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shi Y, Adams JM, Ni Y, Yang T, Jing X, Chen L, He JS, Chu H (2016) The biogeography of soil archaeal communities on the eastern Tibetan Plateau. Sci Rep 6:38893

  30. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:3789–3793

    Article  Google Scholar 

  31. Liu JW, Zhu SQ, Liu XY, Yao P, Ge TT, Zhang XH (2020) Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME J 14:1463–1478. https://doi.org/10.1038/s41396-020-0621-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tripathi B, Stegen J, Kim M, Dong K, Adams J, Lee YK (2018)Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12.https://doi.org/10.1038/s41396-018-0082-4

  33. Wennekes PL, Rosindell J, Etienne RS (2012) The neutral—niche debate: a philosophical perspective. Acta Biotheor 60:257–271. https://doi.org/10.1007/s10441-012-9144-6

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev 81:e00002-00017. https://doi.org/10.1128/MMBR.00002-17

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tao K, Liu Y, Ke T, Zhang Y, Xiao L, Li S, Wei S, Chen L, Hu T (2019) Patterns of bacterial and archaeal communities in sediments in response to dam construction and sewage discharge in Lhasa River. Ecotox Environ Safe 178:195–201. https://doi.org/10.1016/j.ecoenv.2019.03.107

    Article  CAS  Google Scholar 

  36. Zhang M, Wu Z, Sun Q, Ding Y, Ding Z, Sun L (2019) Response of chemical properties, microbial community structure and functional genes abundance to seasonal variations and human disturbance in Nanfei River sediments. Ecotox Environ Safe 183.https://doi.org/10.1016/j.ecoenv.2019.109601

  37. Li Y, Gao Y, Zhang W, Wang C, Wang P, Niu L, Wu H (2019) Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci Total Environ 690:50–60. https://doi.org/10.1016/j.scitotenv.2019.07.014

    Article  CAS  PubMed  Google Scholar 

  38. Lu L, Zou X, Yang J, Xiao Y, Wang Y, Guo J, Li Z (2020)Biogeography of eukaryotic plankton communities along the upper Yangtze River: the potential impact of cascade dams and reservoirs.J Hydrol 590.https://doi.org/10.1016/j.jhydrol.2020.125495

  39. Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q, Sun S (2020)Distinct assembly mechanisms underlie similar biogeographic patterns of rare and abundant bacterioplankton in cascade reservoirs of a large river.Front Microbiol 11.https://doi.org/10.3389/fmicb.2020.00158

  40. Pablo Nino-Garcia J, Ruiz-Gonzalez C, del Giorgio PA (2016) Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J 10:1755–1766. https://doi.org/10.1038/ismej.2015.226

    Article  CAS  Google Scholar 

  41. Yao L, Chen C, Liu G, Li F, Liu W (2018) Environmental factors, but not abundance and diversity of nitrifying microorganisms, explain sediment nitrification rates in Yangtze lakes. RSC Adv 8:1875–1883. https://doi.org/10.1039/c7ra11956a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Dong S, Liu S, Yang Z, Peng M, Zhao C (2013) Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River. Ecol Eng 60:316–324

    Article  Google Scholar 

  43. Fan H, He D, Wang H (2015) Environmental consequences of damming the mainstream Lancang-Mekong River: a review. Earth Sci Rev 146:77–91. https://doi.org/10.1016/j.earscirev.2015.03.007

    Article  Google Scholar 

  44. Lu XX, Li S, Kummu M, Padawangi R, Wang JJ (2014) Observed changes in the water flow at Chiang Saen in the lower Mekong: impacts of Chinese dams? Quatern Int 336:145–157. https://doi.org/10.1016/j.quaint.2014.02.006

    Article  Google Scholar 

  45. REN21 (2020) Renewables 2020 global status report. Paris

  46. Zhong R, Zhao T, He Y, Chen X (2019) Hydropower change of the water tower of Asia in 21st century: a case of the Lancang River hydropower base, upper Mekong. Energy 179:685–696. https://doi.org/10.1016/j.energy.2019.05.059

    Article  Google Scholar 

  47. Orland C, Emilson EJS, Basiliko N, Mykytczuk NCS, Gunn JM, Tanentzap AJ (2019) Microbiome functioning depends on individual and interactive effects of the environment and community structure. ISME J 13:1–11. https://doi.org/10.1038/s41396-018-0230-x

    Article  CAS  PubMed  Google Scholar 

  48. Xu H, Pittock J (2018) Limiting the effects of hydropower dams on freshwater biodiversity: options on the Lancang River, China. Mar Freshwat Res. https://doi.org/10.1071/MF17394

  49. Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA (2013) Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Can Res 73:5905–5913

    Article  CAS  Google Scholar 

  50. Dineshkumar N, Saravanakumar C, Vasanth M, Muralidhar M, Alavandi SV (2014) Genetic and physiological characterization of denitrifying bacteria from brackishwater shrimp culture ponds of India. Int Biodeterior Biodegrad 92:49–56. https://doi.org/10.1016/j.ibiod.2014.04.017

    Article  CAS  Google Scholar 

  51. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  PubMed  PubMed Central  Google Scholar 

  52. Luvizotto D, Araujo J, Silva MCP, Dias A, Kraft B, Tegetmeye H, Strous M, Andreote F (2018)The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. An Acad Bras Ciênc 91.https://doi.org/10.1590/0001-3765201820180373

  53. Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664. https://doi.org/10.1038/ismej.2012.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hu H, He J, Yan H, Hou D, Zhang D, Liu L, Wang K (2020) Seasonality in spatial turnover of bacterioplankton along an ecological gradient in the East China Sea: biogeographic patterns, processes and drivers. Microorganisms 8.https://doi.org/10.3390/microorganisms8101484

  56. Wang K, Yan H, Peng X, Hu H, Zhang H, Hou D, Chen W, Qian P, Liu J, Cai J, Chai X, Zhang D (2020) Community assembly of bacteria and archaea in coastal waters governed by contrasting mechanisms: a seasonal perspective. Mol Ecol 29:3762–3776. https://doi.org/10.1111/mec.15600

    Article  CAS  PubMed  Google Scholar 

  57. Etten EV (2003) Multivariate analysis of ecological data using CANOCO. Austral Ecology 30:486-487. https://doi.org/10.1111/j.1442-9993.2005.01433.x

  58. Rottjers L, Faust K (2018) From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev 42:761–780. https://doi.org/10.1093/femsre/fuy030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang S, Pi Y, Song Y, Jiang Y, Zhou L, Liu W, Zhu G (2020) Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones. Water Res 173:115539. https://doi.org/10.1016/j.watres.2020.115539

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Gu Q, Long X-E, Li Z-L, Liu D-X, Ye D-H, He C-Q, Liu X-Y, Vaananen K, Chen X-P (2016) Anthropogenic activities drive the microbial community and its function in urban river sediment. J Soils Sediments 16:716–725. https://doi.org/10.1007/s11368-015-1246-8

    Article  CAS  Google Scholar 

  61. Liu FH, Lin GH, Gao G, Qin BQ, Zhang JS, Zhao GP, Zhou ZH, Shen JH (2009) Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis. J Appl Microbiol 106:1022–1032. https://doi.org/10.1111/j.1365-2672.2008.04069.x

    Article  CAS  PubMed  Google Scholar 

  62. Song H, Li Z, Du B, Wang G, Ding Y (2012) Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbiol 112:79–89. https://doi.org/10.1111/j.1365-2672.2011.05187.x

    Article  CAS  PubMed  Google Scholar 

  63. Zhang L, Zhao T, Wang Q, Li L, Shen T, Gao G (2019) Bacterial community composition in aquatic and sediment samples with spatiotemporal dynamics in large, shallow, eutrophic Lake Chaohu, China. J Freshw Ecol 34:575–589. https://doi.org/10.1080/02705060.2019.1635536

    Article  CAS  Google Scholar 

  64. Lin XB, Gao DZ, Lu KJ, Li XF (2019) Bacterial community shifts driven by nitrogen pollution in river sediments of a highly urbanized city. Int J Environ Res Public Health 16:15. https://doi.org/10.3390/ijerph16203794

    Article  CAS  Google Scholar 

  65. Sheng P, Yu Y, Zhang G, Huang J, He L, Ding J (2016) Bacterial diversity and distribution in seven different estuarine sediments of Poyang Lake, China. Environ Earth Sci 75.https://doi.org/10.1007/s12665-016-5346-6

  66. Naiman R, Fetherston K, Mckay S, Chen J, Bilby R (2000) River ecology and management: lessons from the Pacific Coastal Ecoregion. J N Am Benthol Soc 16:313–314

    Google Scholar 

  67. Liu L-X, Xu M, Qiu S, Shen R-C (2015) Spatial patterns of benthic bacterial communities in a large lake. Int Rev Hydrobiol 100:97–105. https://doi.org/10.1002/iroh.201401734

    Article  CAS  Google Scholar 

  68. Dai Y, Yang Y, Wu Z, Feng Q, Xie S, Liu Y (2016) Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Appl Microbiol Biotechnol 100:4161–4175. https://doi.org/10.1007/s00253-015-7253-2

    Article  CAS  PubMed  Google Scholar 

  69. Schwarz JIK, Eckert W, Conrad R (2007) Community structure of archaea and bacteria in a profundal lake sediment Lake Kinneret (Israel). Syst Appl Microbiol 30:239–254

    Article  CAS  PubMed  Google Scholar 

  70. Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu Y (2015) Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 99:3291–3302

    Article  CAS  PubMed  Google Scholar 

  71. Tao K, Liu Y, Ke T, Zhang Y, Xiao L, Li S, Wei S, Chen L, Hu T (2019) Patterns of bacterial and archaeal communities in sediments in response to dam construction and sewage discharge in Lhasa River. Ecotoxicol Environ Saf 178:195–201. https://doi.org/10.1016/j.ecoenv.2019.03.107

    Article  CAS  PubMed  Google Scholar 

  72. Luo X, Xiang X, Huang G, Song X, Wang P, Fu K (2019) Bacterial abundance and physicochemical characteristics of water and sediment associated with hydroelectric dam on the Lancang River China. Int J Environ Res Public Health 16.https://doi.org/10.3390/ijerph16112031

  73. Han ZY, Long D, Fang Y, Hou AZ, Hong Y (2019) Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. J Hydrol 570:96–105. https://doi.org/10.1016/j.jhydrol.2018.12.048

    Article  Google Scholar 

  74. Baniulyte D, Favila E, Kelly JJ (2009) Shifts in microbial community composition following surface application of dredged river sediments. Microb Ecol 57:160–169. https://doi.org/10.1007/s00248-008-9410-y

    Article  CAS  PubMed  Google Scholar 

  75. Liu CM, Aziz M, Kachur S, Hsueh PR, Huang YT, Keim P, Price LB (2012) BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol 12:13. https://doi.org/10.1186/1471-2180-12-56

    Article  CAS  Google Scholar 

  76. Vetrovsky T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8:10. https://doi.org/10.1371/journal.pone.0057923

    Article  CAS  Google Scholar 

  77. Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin ZD, Lee P, Yang LY, Poles M, Brown SM, Sotero S, DeSantis T, Brodie E, Nelson K, Pei ZH (2010) Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76:3886–3897. https://doi.org/10.1128/aem.02953-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen Q, Shi W, Huisman J, Maberly S, Zhang J-y, Yu J, Chen Y, Tonina D, Yi Q (2020) Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. Natl Sci Rev 0:1–9.https://doi.org/10.1093/nsr/nwaa026

  79. Zhou SL, Sun Y, Huang TL, Cheng Y, Yang X, Zhou ZZ, Li Y, Li ZX, Cui JS, Xiao L (2020) Reservoir water stratification and mixing affects microbial community structure and functional community composition in a stratified drinking reservoir. J Environ Manage 267:14. https://doi.org/10.1016/j.jenvman.2020.110456

    Article  CAS  Google Scholar 

  80. Yang N, Li Y, Zhang W, Wang L, Gao Y (2019) Reduction of bacterial integrity associated with dam construction: a quantitative assessment using an index of biotic integrity improved by stability analysis. J Environ Manage 230:75–83. https://doi.org/10.1016/j.jenvman.2018.09.071

    Article  PubMed  Google Scholar 

  81. Chen Y, Liu Y, Wang X (2017) Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China. Appl Microbiol Biotechnol 101:3379–3391. https://doi.org/10.1007/s00253-016-8019-1

    Article  CAS  PubMed  Google Scholar 

  82. Konopka A, Bercot T, Nakatsu C (1999) Bacterioplankton community diversity in a series of thermally stratified lakes. Microb Ecol 38:126–135

    Article  CAS  PubMed  Google Scholar 

  83. Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253–2268

    Article  PubMed  PubMed Central  Google Scholar 

  84. Haller L, Tonolla M, Zopfi J, Peduzzi R, Wildi W, Poté J (2011) Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). Water Res 45: 0–1228

  85. Lim J, Woodward J, Tulaczyk S, Christoffersen P, Cummings SP (2011) Analysis of the microbial community and geochemistry of a sediment core from Great Slave Lake, Canada. Anton Leeuw Int J Gen Mol Microbiol 99:423–430. https://doi.org/10.1007/s10482-010-9500-y

    Article  Google Scholar 

  86. Ye W, Liu X, Lin S, Tan J, Pan J, Li D, Yang H (2009) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol 70:263–276. https://doi.org/10.1111/j.1574-6941.2009.00761.x

    Article  CAS  Google Scholar 

  87. Fan X, Xing P (2016) The vertical distribution of sediment archaeal community in the (black bloom) disturbing Zhushan Bay of Lake Taihu. Archaea-Int Microbiol J. https://doi.org/10.1155/2016/8232135

    Article  Google Scholar 

  88. Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S (2018) Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J 12:2198–2210. https://doi.org/10.1038/s41396-018-0153-6

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu T, Zhang AN, Wang J, Liu S, Jiang X, Dang C, Ma T, Liu S, Chen Q, Xie S, Zhang T, Ni J (2018) Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome 6:16. https://doi.org/10.1186/s40168-017-0388-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li Y, Wang C, Zhang W, Wang P, Niu L, Hou J, Wang J, Wang L (2015) Modeling the effects of hydrodynamic regimes on microbial communities within fluvial biofilms: combining deterministic and stochastic processes. Environ Sci Technol 49:12869–12878. https://doi.org/10.1021/acs.est.5b03277

    Article  CAS  PubMed  Google Scholar 

  91. Li M, Mi T, He H, Chen Y, Zhen Y, Yu Z (2021) Active bacterial and archaeal communities in coastal sediments: biogeography pattern, assembly process and co-occurrence relationship. Sci Total Environ 750:142252. https://doi.org/10.1016/j.scitotenv.2020.142252

    Article  CAS  PubMed  Google Scholar 

  92. Peronico PB, Agostinho CS, Fernandes R, Pelicice FM (2020) Community reassembly after river regulation: rapid loss of fish diversity and the emergence of a new state. Hydrobiologia 847:519–533. https://doi.org/10.1007/s10750-019-04117-9

    Article  Google Scholar 

  93. Xiao F, Bi Y, Li X, Huang J, Yu Y, Xie Z, Fang T, Cao X, He Z, Juneau P, Yan Q (2019) The impact of anthropogenic disturbance on bacterioplankton communities during the construction of Donghu Tunnel (Wuhan, China). Microb Ecol 77:277–287. https://doi.org/10.1007/s00248-018-1222-0

    Article  CAS  PubMed  Google Scholar 

  94. Yan Q, Bi Y, Deng Y, He Z, Wu L, Van Nostrand JD, Shi Z, Li J, Wang X, Hu Z (2015) Impacts of the Three Gorges Dam on microbial structure and potential function. Sci Rep 5:8605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Niño-García JP, Ruiz-González C, del Giorgio PA (2016) Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J 10:1755–1766. https://doi.org/10.1038/ismej.2015.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. https://doi.org/10.1038/nrmicro2832

    Article  CAS  PubMed  Google Scholar 

  97. Zou Y, Wu Z, Deng L, Wu A, Wu F, Li K, Jiang T, Peng Y (2017) cooccurNet: an R package for co-occurrence network construction and analysis. Bioinformatics 33:1881–1882. https://doi.org/10.1093/bioinformatics/btx062%JBioinformatics

    Article  CAS  PubMed  Google Scholar 

  98. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We also acknowledge the support from the Personal Biotechnology Company (Shanghai, China). We also thank Dr. Alistair Borthwick for his contribution to language editing.

Funding

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 91747206, 42107493).

Author information

Authors and Affiliations

Authors

Contributions

Bo Yuan, Mengjing Guo, and Xiaode Zhou designed the study; Bo Yuan, Wei Wu, and Mengjing Guo performed the study; Bo Yuan, Miaojie Li, Mengjing Guo, and Wei Wu proposed the data analysis strategy; Bo Yuan and Shuguang Xie analyzed the data; Shuguang Xie assisted with the analytic tools; Bo Yuan, Xiaode Zhou, and Shuguang Xie wrote the original draft. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bo Yuan.

Ethics declarations

Ethics Approval

This article does not contain any studies with animals performed by any of the authors. We state that our manuscript has not and will not be submitted for publication elsewhere.

Consent to Participate and Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 754 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Guo, M., Wu, W. et al. Spatial and Seasonal Patterns of Sediment Bacterial Communities in Large River Cascade Reservoirs: Drivers, Assembly Processes, and Co-occurrence Relationship. Microb Ecol 85, 586–603 (2023). https://doi.org/10.1007/s00248-022-01999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01999-6

Keywords

Navigation