Skip to main content
Log in

Dynamics of Bacterial Communities on Eggshells and on Nest Materials During Incubation in the Oriental Tit (Parus minor)

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Eggshell bacterial communities may affect hatching success and nestling’s condition. Nest materials are in direct contact with the eggshells, but the relationships with the eggshell microbiome during incubation have not been fully elucidated. Here, we characterize eggshell and nest material bacterial communities and their changes during incubation in the Oriental Tit (Parus minor). Bacterial communities on the nest material were relatively stable and remained distinct from the eggshell communities and had higher diversity and greater phylogenetic clustering than the eggshell communities from the same nest, resulting in lower phylogenetic turnover rate of nest material microbiome during incubation than expected by chance. While the species diversity of both communities did not change during incubation, we found significantly greater changes in the structure of bacterial communities on the eggshell than on the nest material. However, eggshell microbiome remained distinct from nest material microbiome, suggesting independent dynamics of the two microbiomes during incubation. We detected an increase in the relative abundance of several bacterial taxa on the eggshell that likely come from the bird’s skin, feathers, cloaca/intestine, or uropygial secretion which suggests some exchange of bacteria between the incubating bird and the eggshell. Furthermore, incubation appeared to promote the abundance of antibiotic producing taxa on the eggshell, which may hypothetically inhibit growth of many bacteria including pathogenic ones. Our results suggest that the future studies should focus on simultaneous monitoring of absolute abundance as well as relative abundance in communities on eggshells, nest materials, and the incubating bird’s body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Raw fastq sequence files were uploaded to NCBI SRA (sequence read archive) under project ID of PRJNA629431.

Code Availability

Not applicable.

References

  1. Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ (2003) Trans–shell infection by pathogenic micro–organisms reduces the shelf life of non–incubated bird’s eggs: a constraint on the onset of incubation? Proc R Soc Lond B 270:2233–2240. https://doi.org/10.1098/rspb.2003.2508

    Article  Google Scholar 

  2. Peralta-Sánchez JM (2010) Nest bacterial environment predict hatching success of wild European birds. A comparative study. Doctoral dissertation, University of Granada

  3. Wang JM, Firestone MK, Beissinger SR (2011) Microbial and environmental effects on avian egg viability: do tropical mechanisms act in a temperate environment? Ecology 92:1137–1145. https://doi.org/10.1890/10-0986.1

    Article  PubMed  Google Scholar 

  4. Shawkey MD, Firestone MK, Brodie EL, Beissinger SR (2009) Avian incubation inhibits growth and diversification of bacterial assemblages on eggs. PLoS ONE 4:e4522–e4522. https://doi.org/10.1371/journal.pone.0004522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruiz-De-Castañeda R, Vela AI, González-Braojos S, Briones V, Moreno J (2011) Drying eggs to inhibit bacteria: Incubation during laying in a cavity nesting passerine. Behav Proc 88:142–148. https://doi.org/10.1016/j.beproc.2011.08.012

    Article  Google Scholar 

  6. Brandl HB, van Dongen WFD, Darolová A, Krištofík J, Majtan J, Hoi H (2014) Composition of bacterial assemblages in different components of reed warbler nests and a possible role of egg incubation in pathogen regulation. PLoS ONE 9:e114861. https://doi.org/10.1371/journal.pone.0114861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grizard S, Dini-Andreote F, Tieleman BI, Salles JF (2014) Dynamics of bacterial and fungal communities associated with eggshells during incubation. Ecol Evol 4:1140–1157. https://doi.org/10.1002/ece3.1011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee WY, Kim M, Jablonski PG, Choe JC, Lee S-i (2014) Effect of incubation on bacterial communities of eggshells in a temperate bird, the Eurasian magpie (Pica pica). PLoS ONE 9:e103959. https://doi.org/10.1371/journal.pone.0103959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cook MI, Beissinger SR, Toranzos GA, Arendt WJ (2005) Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecol Lett 8:532–537. https://doi.org/10.1111/j.1461-0248.2005.00748.x

    Article  PubMed  Google Scholar 

  10. van Veelen HPJ, Salles JF, Tieleman BI (2018) Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME J 12:1375–1388. https://doi.org/10.1038/s41396-018-0067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brooks J, Taylor DJ (1955) Eggs and egg products. Special Report 60, Food Investigation, H. M. S. O., London, p 54

  12. Ruiz-De-Castañeda R, Vela AI, Lobato E, Briones V, Moreno J (2011) Bacterial loads on eggshells of the pied flycatcher: environmental and maternal factors. Condor 113:200–208. https://doi.org/10.1525/cond.2011.100035

    Article  Google Scholar 

  13. Martínez-García Á, Martín-Vivaldi M, Rodríguez-Ruano SM, Peralta-Sánchez JM, Valdivia E, Soler JJ (2016) Nest bacterial environment affects microbiome of hoopoe eggshells, but not that of the uropygial secretion. PLoS ONE 11:e0158158–e0158158. https://doi.org/10.1371/journal.pone.0158158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Díaz-Lora S, Martín-Vivaldi M, Juárez García-Pelayo N, Azcárate García M, Rodríguez-Ruano SM, Martínez-Bueno M, Soler JJ (2019) Experimental old nest material predicts hoopoe Upupa epops eggshell and uropygial gland microbiota. J Avian Biol 50:e02083. https://doi.org/10.1111/jav.02083

  15. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R (2016) Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-00015. https://doi.org/10.1128/mSystems.00009-15

    Article  PubMed  Google Scholar 

  16. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics 13:31. https://doi.org/10.1186/1471-2105-13-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Westcott SL, Schloss PD (2017) OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2:e00073-00017. https://doi.org/10.1128/mSphereDirect.00073-17

    Article  PubMed  PubMed Central  Google Scholar 

  20. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  22. Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664. https://doi.org/10.1038/ismej.2012.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166

  24. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. https://doi.org/10.1093/bioinformatics/btn358

  25. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  26. Clarke KR, Clarke K, Gorley K, Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial

  27. Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10:1200–1202. https://doi.org/10.1038/nmeth.2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, Hyde ER, Knight R (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27. https://doi.org/10.1186/s40168-017-0237-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57:289–300

    Google Scholar 

  31. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728. https://doi.org/10.1128/aem.72.3.1719-1728.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910

    Article  CAS  PubMed  Google Scholar 

  33. Navarro-Noya YE, Jiménez-Aguilar A, Valenzuela-Encinas C, Alcántara-Hernández RJ, Ruíz-Valdiviezo VM, Ponce-Mendoza A, Luna-Guido M, Marsch R, Dendooven L (2014) Bacterial communities in soil under moss and lichen-moss crusts. Geomicrobiol J 31:152–160

    Article  CAS  Google Scholar 

  34. Grizard S, Versteegh MA, Ndithia HK, Salles JF, Tieleman BI (2015) Shifts in bacterial communities of eggshells and antimicrobial activities in eggs during incubation in a ground-nesting passerine. PLoS ONE 10:e0121716. https://doi.org/10.1371/journal.pone.0121716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trudeau S, Thibodeau A, Côté J-C, Gaucher M-L, Fravalo P (2020) Contribution of the broiler breeders’ fecal microbiota to the establishment of the eggshell microbiota. Front Microbiol 11:666. https://doi.org/10.3389/fmicb.2020.00666

  36. Grond K, Sandercock BK, Jumpponen A, Zeglin LH (2018) The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol 49:e01788

    Article  Google Scholar 

  37. Mannanov RN, Sattarova RK (2001) Antibiotics produced by bacillus bacteria. Chem Nat Compd 37:117–123. https://doi.org/10.1023/A:1012314516354

    Article  CAS  Google Scholar 

  38. Bowman JP, Cavanagh J, Austin JJ, Sanderson K (1996) Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Evol Microbiol 46:841–848

    CAS  Google Scholar 

  39. Bozal N, Montes MJ, Tudela E, Guinea J (2003) Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. J Med Microbiol 53:1093–1100

    CAS  Google Scholar 

  40. Zeng Y-X, Yu Y, Liu Y, Li H-R (2016) Psychrobacter glaciei sp. nov., isolated from the ice core of an Arctic glacier. Int J Syst Evol Microbiol 66:1792–1798

    Article  CAS  PubMed  Google Scholar 

  41. Ofek M, Hadar Y, Minz D (2012) Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE 7:e40117. https://doi.org/10.1371/journal.pone.0040117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aivelo T, Tschirren B (2020) Bacterial microbiota composition of a common ectoparasite of cavity-breeding birds, the Hen Flea Ceratophyllus gallinae. Ibis 162:1088–1092. https://doi.org/10.1111/ibi.12811

    Article  Google Scholar 

  43. Goodenough AE, Stallwood B (2010) Intraspecific variation and interspecific differences in the bacterial and fungal assemblages of blue tit (Cyanistes caeruleus) and great tit (Parus major) Nests. Microb Ecol 59:221–232. https://doi.org/10.1007/s00248-009-9591-z

    Article  PubMed  Google Scholar 

  44. Joanna María O-A, José Miguel S-C, Fabiola G-A, Elizabeth G-D, Araceli R-C, Patricia A-P, Claudia W-A, Maribel G-V, Gloria L-Á, Adda Jeanette G-C, José Alberto D-Q, Alfonso M-T, José Ernesto R-G (2016) Fatal Psychrobacter sp. infection in a pediatric patient with meningitis identified by metagenomic next-generation sequencing in cerebrospinal fluid. Arch Microbiol 198:129–135. https://doi.org/10.1007/s00203-015-1168-2

    Article  CAS  Google Scholar 

  45. Kämpfer P, Jerzak L, Wilharm G, Golke J, Busse H-J, Glaeser SP (2015) Psychrobacter ciconiae sp. nov., isolated from white storks (Ciconia ciconia). Int J Syst Evol Microbiol 65:772–777. https://doi.org/10.1099/ijs.0.000013

    Article  CAS  PubMed  Google Scholar 

  46. Kämpfer P, Glaeser SP, Irgang R, Fernández-Negrete G, Poblete-Morales M, Fuentes-Messina D, Cortez-San Martín M, Avendaño-Herrera R (2020) Psychrobacter pygoscelis sp. nov. isolated from the penguin Pygoscelis papua. Int J Syst Evol Microbiol 70:211–219. https://doi.org/10.1099/ijsem.0.003739

    Article  CAS  PubMed  Google Scholar 

  47. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. https://doi.org/10.1007/s002030100345

    Article  CAS  PubMed  Google Scholar 

  48. Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203. https://doi.org/10.1186/s12934-016-0603-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Saarela M, Berlin M, Nygren H, Lahtinen P, Honkapää K, Lantto R, Maukonen J (2017) Characterization of feather-degrading bacterial populations from birds’ nests – potential strains for biomass production for animal feed. Int Biodeterior Biodegradation 123:262–268. https://doi.org/10.1016/j.ibiod.2017.07.006

    Article  Google Scholar 

  50. Engel K, Sauer J, Jünemann S, Winkler A, Wibberg D, Kalinowski J, Tauch A, Caspers BA (2018) Individual- and species-specific skin microbiomes in three different Estrildid Finch species revealed by 16S amplicon sequencing. Microb Ecol 76:518–529. https://doi.org/10.1007/s00248-017-1130-8

    Article  CAS  PubMed  Google Scholar 

  51. Ross AA, Rodrigues Hoffmann A, Neufeld JD (2019) The skin microbiome of vertebrates. Microbiome 7:79. https://doi.org/10.1186/s40168-019-0694-6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bodawatta KH, Schierbech SK, Petersen NR, Sam K, Bos N, Jønsson KA, Poulsen M (2020) Great tit (Parus major) uropygial gland microbiomes and their potential defensive roles. Front Microbiol 11:1735. https://doi.org/10.3389/fmicb.2020.01735

  53. Kropáčková L, Pechmanová H, Vinkler M, Svobodová J, Velová H, Těšičký M, Martin J-F, Kreisinger J (2017) Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major). PLoS ONE 12:e0179945. https://doi.org/10.1371/journal.pone.0179945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu R, Xiang X, Dong Y, Cheng L, Zhou L (2020) Comparing the intestinal bacterial communities of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus). Avian Res 11:13. https://doi.org/10.1186/s40657-020-00195-9

    Article  Google Scholar 

  55. Burtt EH Jr, Ichida JM (1999) Occurrence of feather-degrading bacilli in the plumage of birds. Auk 116:364–372. https://doi.org/10.2307/4089371

    Article  Google Scholar 

  56. Peralta-Sánchez JM, Martín-Vivaldi M, Martín-Platero AM, Martínez-Bueno M, Oñate M, Ruiz-Rodríguez M, Soler JJ (2012) Avian life history traits influence eggshell bacterial loads: a comparative analysis. Ibis 154:725–737. https://doi.org/10.1111/j.1474-919X.2012.01256.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Yeojoo Yoon for her assistance in field sampling.

Funding

This work was supported by National Research Foundation of Korea (NRF) via grants 3344–20180017 and 2–2019-1273–001-3, by DGIST Start-up Fund Program of the Ministry of Science and ICT via grant 2021010026, and by the BK Korea 21 (Grant number: 5253–20180100/21A20131212006).

Author information

Authors and Affiliations

Authors

Contributions

Hokyung Song: Conceptualization; Investigation; Formal analysis; Writing, original draft; Visualization; Funding acquisition. Keesan Lee, Injae Hwang, Eunjeong Yang, Jungmoon Ha, and Woojoo Kim: Investigation (nest monitoring and sample collection). Sungjin Park: Investigation (nest monitoring); Writing, review and editing. Hyunjoon Cho: Formal analysis. Sang-im Lee, Jae Chun Choe, and Piotr Jablonski: Conceptualization; Investigation; Writing, review and editing; Funding acquisition.

Corresponding authors

Correspondence to Sang-im Lee or Piotr Jablonski.

Ethics declarations

Ethics Approval

This research was conducted following national and international guidelines. The methods used in this study were reviewed and approved by Institutional Animal Care and Use Committee of Seoul National University (No. SNU-180727–1).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 230 KB)

Supplementary file2 (XLSX 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Lee, K., Hwang, I. et al. Dynamics of Bacterial Communities on Eggshells and on Nest Materials During Incubation in the Oriental Tit (Parus minor). Microb Ecol 85, 429–440 (2023). https://doi.org/10.1007/s00248-021-01927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01927-0

Keywords

Navigation