Skip to main content
Log in

The Fate of Bacteria of the Bacillus cereus Group in the Amoeba Environment

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The Bacillus cereus sensu lato group consists of several closely related species, including B. anthracis, B. cereus sensu stricto, and B. thuringiensis. Spores of these pathogenic bacteria are commonly found in the soil but evidence suggests that they are unable to grow in such a natural environment in the absence of nutrient input. Amoebas have been reported to be an amplifier for several species of pathogenic bacteria and their potential involvement to explain the large amount of B. thuringiensis and B. cereus spores in soil has been frequently proposed. Here, we studied the fate of Bacillus and amoebas when cultured together. We show that the virulence factors produced by B. thuringiensis and B. cereus do not affect the amoeba Acanthamoeba castellanii, which, on the contrary, can phagocytose and effectively digest vegetative Bacillus cells to grow and prevent the formation of cysts. Bacterial spores can germinate in the amoeba environment and the vegetative cells can then form chains or aggregates that appear to be less efficiently phagocyted by the amoeba. The use of transcriptional fusions between fluorescent reporter genes and stationary phase- and sporulation-specific promoters showed that the sporulation process occurs more efficiently in the presence of amoebas than in their absence. Moreover, our results showed the amoeba environment to promote spore germination and allow the bacteria to complete their developmental cycle. Overall, this study suggests that the amoeba-Bacillus interaction creates a virtuous circle in which each protagonist helps the other to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bazinet AL (2017) Pan-genome and phylogeny of Bacillus cereus sensu lato. BMC Evol Biol 17:176. https://doi.org/10.1186/s12862-017-1020-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640. https://doi.org/10.1046/j.1462-2920.2003.00461.x

    Article  CAS  PubMed  Google Scholar 

  3. Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606. https://doi.org/10.1111/j.1574-6976.2008.00112.x

    Article  CAS  PubMed  Google Scholar 

  4. Vilas-Bôas GT, Peruca APS, Arantes OMN (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can J Microbiol 53:673–687. https://doi.org/10.1139/W07-029

  5. Vilain S, Luo Y, Hildreth MB, Brözel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl Environ Microbiol 72:4970. https://doi.org/10.1128/AEM.03076-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Cuyk S, Deshpande A, Hollander A et al (2011) Persistence of Bacillus thuringiensis subsp. kurstaki in urban environments following spraying. Appl Env Microbiol 77:7954–7961. https://doi.org/10.1128/AEM.05207-11

    Article  CAS  Google Scholar 

  7. Vilas-Bôas LA, Vilas-Bôas GFLT, Saridakis HO et al (2000) Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol Ecol 31:255–259. https://doi.org/10.1111/j.1574-6941.2000.tb00691.x

    Article  PubMed  Google Scholar 

  8. Ivanova N, Sorokin A, Anderson I et al (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87. https://doi.org/10.1038/nature01582

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Lai Q, Göker M et al (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:1–11. https://doi.org/10.1038/srep14082

    Article  CAS  Google Scholar 

  10. Ehling-Schulz M, Lereclus D, Koehler TM (2019) The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018

  11. Dommel MK, Lücking G, Scherer S, Ehling-Schulz M (2011) Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol 28:284–290. https://doi.org/10.1016/j.fm.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  12. Kolstø A-B, Tourasse NJ, Økstad OA (2009) What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 63:451–476. https://doi.org/10.1146/annurev.micro.091208.073255

    Article  CAS  PubMed  Google Scholar 

  13. Raymond B, Johnston PR, Nielsen-LeRoux C et al (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194. https://doi.org/10.1016/j.tim.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  14. Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329. https://doi.org/10.1016/j.fmrre.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  15. Agaisse H, Gominet M, Økstad OA et al (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053. https://doi.org/10.1046/j.1365-2958.1999.01419.x

    Article  CAS  PubMed  Google Scholar 

  16. Gohar M, Faegri K, Perchat S et al (2008) The PlcR virulence regulon of Bacillus cereus. PLoS ONE 3:e2793. https://doi.org/10.1371/journal.pone.0002793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Callegan MC, Kane ST, Cochran DC et al (2003) Relationship of plcR-regulated factors to Bacillus endophthalmitis virulence. Infect Immun 71:3116–3124. https://doi.org/10.1128/IAI.71.6.3116-3124.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doll VM, Ehling-Schulz M, Vogelmann R (2013) Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS ONE 8:e61404. https://doi.org/10.1371/journal.pone.0061404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salamitou S, Ramisse F, Brehélin M et al (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146:2825–2832. https://doi.org/10.1099/00221287-146-11-2825

  20. Fedhila S, Gohar M, Slamti L et al (2003) The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J Bacteriol 185:2820–2825. https://doi.org/10.1128/JB.185.9.2820-2825.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grandvalet C, Gominet M, Lereclus D (2001) Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology 147:1805–1813. https://doi.org/10.1099/00221287-147-7-1805

    Article  CAS  PubMed  Google Scholar 

  22. Guillemet E, Tran S-L, Cadot C et al (2013) Glucose 6P binds and activates HlyIIR to repress Bacillus cereus haemolysin hlyII gene expression. PLoS ONE 8:e55085. https://doi.org/10.1371/journal.pone.0055085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guillemet E, Cadot C, Tran S-L et al (2010) The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence. J Bacteriol 192:286–294. https://doi.org/10.1128/JB.00264-09

    Article  CAS  PubMed  Google Scholar 

  24. Ramarao N, Lereclus D (2005) The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell Microbiol 7:1357–1364. https://doi.org/10.1111/j.1462-5822.2005.00562.x

    Article  CAS  PubMed  Google Scholar 

  25. Tran S-L, Guillemet E, Ngo-Camus M et al (2011) Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cell Microbiol 13:92–108. https://doi.org/10.1111/j.1462-5822.2010.01522.x

    Article  CAS  PubMed  Google Scholar 

  26. Andreu N, Phelan J, de Sessions PF et al (2017) Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis. Sci Rep 7:1–12. https://doi.org/10.1038/srep42225

    Article  CAS  Google Scholar 

  27. Bowers B (1977) Comparison of pinocytosis and phagocytosis in Acanthamoeba castellanii. Exp Cell Res 110:409–417. https://doi.org/10.1016/0014-4827(77)90307-X

    Article  CAS  PubMed  Google Scholar 

  28. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433. https://doi.org/10.1128/CMR.17.2.413-433.2004

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thomas V, McDonnell G, Denyer SP, Maillard J-Y (2010) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34:231–259. https://doi.org/10.1111/j.1574-6976.2009.00190.x

    Article  CAS  PubMed  Google Scholar 

  30. Bakala N’Goma JC, Le Moigne V, Soismier N, et al (2015) Mycobacterium abscessus phospholipase C expression is induced during coculture within amoebae and enhances M. abscessus virulence in mice. Infect Immun 83:780. https://doi.org/10.1128/IAI.02032-14

  31. Swart AL, Harrison CF, Eichinger L, et al (2018) Acanthamoeba and Dictyostelium as cellular models for Legionella infection. Front Cell Infect Microbiol 8. https://doi.org/10.3389/fcimb.2018.00061

  32. Lambrecht E, Baré J, Chavatte N et al (2015) Protozoan cysts act as a survival niche and protective shelter for foodborne pathogenic bacteria. Appl Environ Microbiol 81:5604–5612. https://doi.org/10.1128/AEM.01031-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moreno-Mesonero L, Ferrús MA, Moreno Y (2020) Determination of the bacterial microbiome of free-living amoebae isolated from wastewater by 16S rRNA amplicon-based sequencing. Environ Res 190:109987. https://doi.org/10.1016/j.envres.2020.109987

    Article  CAS  PubMed  Google Scholar 

  34. Dey R, Hoffman PS, Glomski IJ (2012) Germination and amplification of anthrax spores by soil-dwelling amoebas. Appl Environ Microbiol 78:8075. https://doi.org/10.1128/AEM.02034-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beeton ML, Atkinson DJ, Waterfield NR (2013) An amoeba phagocytosis model reveals a novel developmental switch in the insect pathogen Bacillus thuringiensis. J Insect Physiol 59:223–231. https://doi.org/10.1016/j.jinsphys.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  36. Santos SS, Hendriksen NB, Jakobsen HH, Winding A (2017) Effects of Bacillus cereus endospores on free-living protist growth. Microb Ecol 73:699–709. https://doi.org/10.1007/s00248-016-0905-7

    Article  CAS  PubMed  Google Scholar 

  37. Lereclus D, Lecadet M-M, Ribier J, Dedonder R (1982) Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains. Mol Gen Genet 186:391–398. https://doi.org/10.1007/BF00729459

    Article  CAS  PubMed  Google Scholar 

  38. Rowbotham TJ (1983) Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J Clin Pathol 36:978. https://doi.org/10.1136/jcp.36.9.978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lereclus D, Arantes O, Chaufaux J, Lecadet M (1989) Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 51:211–217. https://doi.org/10.1016/0378-1097(89)90511-9

  40. Wilcks A, Jayaswal N, Lereclus D, Andrup L (1998) Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology 144:1263–1270. https://doi.org/10.1099/00221287-144-5-1263

    Article  CAS  PubMed  Google Scholar 

  41. Bourgouin C, Larget-Thiery I, de Barjac H (1984) Efficacy of dry powders from Bacillus sphaericus: RB 80, a potent reference preparation for biological titration. J Invertebr Pathol 44:146–150. https://doi.org/10.1016/0022-2011(84)90005-3

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez E, Ramisse F, Ducoureau J-P et al (1998) Bacillus thuringiensis subsp.konkukian (Serotype H34) superinfection: Case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36:2138–2139. https://doi.org/10.1128/JCM.36.7.2138-2139.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clements MO, Moir A (1998) Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants. J Bacteriol 180:6729–6735. https://doi.org/10.1128/JB.180.24.6729-6735.1998

  44. Turnbull PC, Kramer JM, Jørgensen K et al (1979) Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Am J Clin Nutr 32:219–228. https://doi.org/10.1093/ajcn/32.1.219

    Article  CAS  PubMed  Google Scholar 

  45. Lapidus A, Goltsman E, Auger S et al (2008) Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact 171:236–249. https://doi.org/10.1016/j.cbi.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  46. Réjasse A, Gilois N, Barbosa I et al (2012) Temperature-dependent production of various PlcR-controlled virulence factors in Bacillus weihenstephanensis strain KBAB4. Appl Environ Microbiol 78:2553–2561. https://doi.org/10.1128/AEM.07446-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verplaetse E, Slamti L, Gohar M, Lereclus D (2015) Cell differentiation in a Bacillus thuringiensis population during planktonic growth, biofilm formation, and host infection. mBio 6:e00138-15. https://doi.org/10.1128/mBio.00138-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lauderdale KJ, Malone CL, Boles BR et al (2010) Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res 28:55–61. https://doi.org/10.1002/jor.20943

    Article  CAS  PubMed  Google Scholar 

  49. Agaisse H, Lereclus D (1994) Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol Microbiol 13:97–107. https://doi.org/10.1111/j.1365-2958.1994.tb00405.x

    Article  CAS  PubMed  Google Scholar 

  50. Page FC (1967) Taxonomic criteria for limax amoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. J Protozool 14:499–521. https://doi.org/10.1111/j.1550-7408.1967.tb02036.x

    Article  CAS  PubMed  Google Scholar 

  51. Froquet R, Lelong E, Marchetti A, Cosson P (2009) Dictyostelium discoideum: a model host to measure bacterial virulence. Nat Protoc 4:25–30. https://doi.org/10.1038/nprot.2008.212

    Article  CAS  PubMed  Google Scholar 

  52. Slamti L, Perchat S, Gominet M et al (2004) Distinct mutations in plcR explain why some strains of the Bacillus cereus group are nonhemolytic. J Bacteriol 186:3531. https://doi.org/10.1128/JB.186.11.3531-3538.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953. https://doi.org/10.1101/gad.1645008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeßberger N, Dietrich R, Bock S et al (2014) Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon 77:49–57. https://doi.org/10.1016/j.toxicon.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  55. Ehling-Schulz M, Fricker M, Grallert H et al (2006) Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 6:20. https://doi.org/10.1186/1471-2180-6-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou W, Warrilow AGS, Thomas CD et al (2018) Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1164–1178. https://doi.org/10.1016/j.bbalip.2018.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Coulon C, Collignon A, McDonnell G, Thomas V (2010) Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J Clin Microbiol 48:2689–2697. https://doi.org/10.1128/JCM.00309-10

    Article  PubMed  PubMed Central  Google Scholar 

  58. Perchat S, Dubois T, Zouhir S et al (2011) A cell–cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Mol Microbiol 82:619–633. https://doi.org/10.1111/j.1365-2958.2011.07839.x

    Article  CAS  PubMed  Google Scholar 

  59. Dubois T, Faegri K, Gélis-Jeanvoine S et al (2016) Correction: Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLOS Pathog 12:e1006049. https://doi.org/10.1371/journal.ppat.1006049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bravo A, Agaisse H, Salamitou S, Lereclus D (1996) Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol Gen Genet 250:734–741. https://doi.org/10.1007/BF02172985

    Article  CAS  PubMed  Google Scholar 

  61. Rong S, Rosenkrantz MS, Sonenshein AL (1986) Transcriptional control of the Bacillus subtilis spoIID gene. J Bacteriol 165:771–779. https://doi.org/10.1128/jb.165.3.771-779.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Slamti L, Perchat S, Huillet E, Lereclus D (2014) Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins 6:2239–2255. https://doi.org/10.3390/toxins6082239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Acanthamoeba castellanii (ATCC 30010) was a kind gift from Fabienne Misguich (UVSQ). We are greatly indebted to Fabienne for the valuable advice she gave us on the amoeba world. We thank Michel Gohar for the gift of the plasmid PHT304-18ΩPsar-gfp.

Funding

This work was supported by the National Institute for Agriculture, Food and Environment (INRAE). HC was funded by the China Scholarship Council (CSC). The CyFlow space flow cytometer used in this study was funded by the DIM (Domaine d’intérêt majeur) Astrea (French regional program: Ast11 0137).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, material preparation, data collection, and analysis. The first draft of the manuscript was written by Haibo Chen, Émilie Verplaetse, and Didier Lereclus, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Didier Lereclus.

Ethics declarations

Ethics Approval

Principles of ethical and professional conduct have been followed.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Financial Interests

The authors have no relevant financial to disclose.

Conflicts of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4074 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Verplaetse, E., Jauslin, T. et al. The Fate of Bacteria of the Bacillus cereus Group in the Amoeba Environment. Microb Ecol 83, 1088–1104 (2022). https://doi.org/10.1007/s00248-021-01828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01828-2

Keywords

Navigation