Skip to main content

The Biology, Ecology and Taxonomy of Bacillus thuringiensis and Related Bacteria

  • Chapter
  • First Online:
Bacillus thuringiensis and Lysinibacillus sphaericus

Abstract

Bacillus thuringiensis produces a range of specialized virulence factors that enable it to infect invertebrate hosts. Despite the level of interest in this species, there have been a number of controversies and disagreements regarding its ecological niche, how it kills its hosts and benefits from the production of Cry toxins and whether B. thuringiensis constitutes a real species that is a distinct member of the Bacillus cereus group. Hypotheses arguing that Bt is a soil saprophyte, a gut or plant commensal or a specialized pathogen are critically evaluated. Evidence supporting the specialized pathogen hypothesis includes proteomic and genomic studies revealing adaptations to lyse cells and exploit peptide-rich resources. Bt infects insects and reproduces effectively in the field without obvious epizootics and uses plants to vector inocula from soil to the phylloplane. Bt Cry toxins, and other virulence factors, can be treated as cooperative public goods. Cooperative production of virulence factors has implications for dose-response curves and understanding which ecological factors can select for the maintenance of virulence. Finally, the taxonomy of Bt and the phylogeny of the B. cereus group are discussed. The genetic and ecological variation within the B. cereus group is substantial and argues against lumping all members of this clade into one species; a revised nomenclature of the group is suggested that includes restricting the use of B. thuringiensis to a single clade that contains the vast majority of invertebrate-adapted isolates and revising the use of the cereus and anthracis epithets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison JA (1993) Persistence and nontarget effects of Bacillus thuringiensis in soil – a review. Can J For Res 23:2329–2342

    Article  Google Scholar 

  • Adhikari BN, Lin C-Y, Bai X, Ciche TA, Grewal PS, Dillman AR, Chaston JM, Shapiro-Ilan DI, Bilgrami AL, Gaugler R, Sternberg PW, Adams BJ (2009) Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora. BMC Genomics 10:609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G (2010) Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11:332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai C, Shapiro-Ilan DI, Gaugler R, Hopper KR (2005) Stabilization of beneficial traits in Heterorhabditis bacteriophora through creation of inbred lines. Biol Control 32:220–227

    Article  Google Scholar 

  • Bartoszewicz M, Bideshi DK, Kraszewska A, Modzelewska E, Swiecicka I (2009) Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristic of Bacillus weihenstephanensis. J Appl Microbiol 106:1967–1975

    Article  CAS  PubMed  Google Scholar 

  • Bilgrami AL, Gaugler R, Shapiro-Ilan DI, Adams BJ (2006) Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology 8:397–409

    Article  Google Scholar 

  • Bizzarri MF, Bishop AH (2008) The ecology of Bacillus thuringiensis on the phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb Ecol 104:60–69

    CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Brockhurst MA, Hochberg ME, Bell T, Buckling A (2006) Character displacement promotes cooperation in bacterial biofilms. Curr Biol 16:2030–2034

    Article  CAS  PubMed  Google Scholar 

  • Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103:15196–15199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burges HD, Hurst JA (1977) Ecology of Bacillus thuringiensis in storage moths. J Invertebr Pathol 30:131–139

    Article  Google Scholar 

  • Cardazzo B, Negrisolo E, Carraro L, Alberghini L, Patarnello T, Giaccone V (2008) Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl Environ Microbiol 74:850–860

    Article  CAS  PubMed  Google Scholar 

  • Cascales E, Buchanan S, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castilhos-Fortes R, Matsumura A, Diehl E, Fiuza LM (2002) Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Braz J Microbiol 33:212–222

    Article  Google Scholar 

  • Ceuppens S, Van de Wiele T, Rajkovic A, Ferrer-Cabaceran T, Heyndrickx M, Boon N, Uyttendaele M (2012) Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth of Bacillus cereus. Int J Food Microbiol 155:241–246

    Article  PubMed  Google Scholar 

  • Charles JF, de Barjac H (1981) Variations du pH de l’intestin moyen d’Aedes aegypti en relation avec l ’intoxication par les cristaux de Bacillus thuringiensis var. israelensis (serotype H 14). Bull Soc Pathol Exot 74:91–95

    CAS  Google Scholar 

  • Chiang AS, Yen DF, Peng WK (1986) Germination and proliferation of Bacillus thuringiensis in the gut of rice moth larva, Corcyra cephalonica. J Invertebr Pathol 48:96–99

    Article  Google Scholar 

  • Collier FA, Elliot SL, Ellis RJ (2005) Spatial variation in Bacillus thuringiensis/cereus populations within the phyllosphere of broad-leaved dock (Rumex obtusifolius) and surrounding habitats. FEMS Microb Ecol 54:417–425

    Article  CAS  Google Scholar 

  • Cornforth DM, Matthews A, Brown SP, Raymond B (2015) Bacterial cooperation causes systematic errors in pathogen risk assessment due to the failure of the independent action hypothesis. PLoS Pathog 11:e1004775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daborn PJ, Waterfield N, Silva CP, Au CPY, Sharma S, Ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci USA 99:10742–10747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damgaard PH, Hansen BM, Pedersen JC, Eilenberg J (1997) Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops. J Appl Microbiol 82:253–258

    Article  CAS  PubMed  Google Scholar 

  • Damgaard PH, Abdel-Hameed A, Eilenberg J, Smits PH (1998) Natural occurrence of Bacillus thuringiensis on grass foliage. World J Microbiol Biotechnol 14:239–242

    Article  Google Scholar 

  • Delucca AJ, Simonson JG, Larson AD (1981) Bacillus thuringiensis distribution in soils of the United States. Can J Microbiol 27:865–870

    Article  PubMed  Google Scholar 

  • Delucca AJ, Palmgren MS, Ciegler A (1982) Bacillus thuringiensis in grain elevator dusts. Can J Microbiol 28:452–456

    Article  Google Scholar 

  • Deng C, Slamti L, Ben R, Liu G, Lemy C, Gominet M, Yang J, Wang H, Peng Q, Zhang J, Lereclus D, Song F (2015) Division of labour and terminal differentiation in a novel Bacillus thuringiensis strain. ISME J 9:286–296

    Article  CAS  PubMed  Google Scholar 

  • Didelot X, Barker M, Falush D, Priest FG (2009) Evolution of pathogenicity in the Bacillus cereus group. Syst Appl Microbiol 32:81–90

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414

    Article  CAS  PubMed  Google Scholar 

  • Dragon DC, Rennie RP (1995) The ecology of anthrax spores: tough but not invincible. Can Vet J 36:295–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois T, Faegri K, Perchat S, Lemy C, Buisson C, Nielsen-Leroux C, Gohar M, Jacques P, Ramarao N, Kolstø A-B, Lereclus D (2012) Necrotrophism is a quorum-sensing regulated lifestyle in Bacillus thuringiensis. PLoS Pathol 8:e1002629

    Article  CAS  Google Scholar 

  • Dubois T, Perchat S, Verplaetse E, Gominet M, Lemy C, Aumont-Nicaise M, Grenha R, Nessler S, Lereclus D (2013) Activity of the Bacillus thuringiensis NprR-NprX cell-cell communication system is co-ordinated to the physiological stage through a complex transcriptional regulation. Mol Microbiol 88:48–63

    Article  CAS  PubMed  Google Scholar 

  • Ebert D, Weisser WW (1997) Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites. Proc R Soc Lond B 264:985–991

    Article  CAS  Google Scholar 

  • EFSA biohazard panel (2016) Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 14:99

    Google Scholar 

  • Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, Ffrench-Constant RH, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104:2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliot SL, Sabelis MW, Janssen A, van der Geest LPS, Beerling EAM, Fransen J (2000) Can plants use entomopathogens as bodyguards? Ecol Lett 3:228–235

    Article  Google Scholar 

  • Endo Y, Nishiitsutsujiuwo J (1980) Mode of action of Bacillus thuringiensis delta-endotoxin- histopathological changes in the silkworm midgut. J Invertebr Pathol 36:90–103

    Article  CAS  Google Scholar 

  • Eskils K, Lovgren A (1997) Release of Bacillus thuringiensis subsp. israelensis in Swedish soil. FEMS Microbiol Ecol 23:229–237

    Article  CAS  Google Scholar 

  • Federici BA, Siegel JP (2007) Assessment of safety of Bacillus thuringiensis and Bt crops used for insect control. In: Hammond BG (ed) Safety of food proteins in agricultural crops. Taylor and Francis, London, pp 46–101

    Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  CAS  PubMed  Google Scholar 

  • Frank SA (1998) Foundations of social evolution. Princeton University Press, Princeton

    Google Scholar 

  • Frank SA (2010) A general model of the public goods dilemma. J Evol Biol 23:1245–1250

    Article  PubMed  PubMed Central  Google Scholar 

  • French-Constant RH, Bowen DJ (2000) Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57:828–833

    Article  Google Scholar 

  • Ganz HH, Turner WC, Brodie EL, Kusters M, Shi Y, Sibanda H, Torok T, Getz WM (2014) Interactions between Bacillus anthracis and plants may promote anthrax transmission. PLoS Negl Trop Dis 8:e2903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester

    Google Scholar 

  • Gohar M, Okstad OA, Gilois N, Sanchis V, Kolsto AB, Lereclus D (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784–791

    Article  CAS  PubMed  Google Scholar 

  • Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5:3696–3711

    Article  CAS  PubMed  Google Scholar 

  • Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA, Gominet M, Kolstø AB, Lereclus D (2008) The PlcR virulence regulon of Bacillus cereus. PLoS One 3:e2793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez JM, Carlton BC (1984) A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid 11:28–38

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JM, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringienisis and B. cereus. Proc Natl Acad Sci U S A 79:6951–6955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Guillemet E, Cadot C, Tran S-L, Guinebretière M-H, Lereclus D, Ramarao N (2010) The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence. J Bacteriol 192:286–294

    Article  CAS  PubMed  Google Scholar 

  • Guinebretière M-H, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, Svensson B, Sanchis V, Nguyen-Thé C, Heyndrickx M, De Vos P (2008) Ecological diversification in the Bacillus cereus group. Environ Microbiol 10:851–865

    Article  PubMed  CAS  Google Scholar 

  • Guinebretière M-H, Velge P, Couvert O, Carlin F, Debuyser ML, Nguyen-The C (2010) Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J Clin Microbiol 48:3388–3391

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas CN (1983) Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. Am J Epidemiol 118:573–582

    Article  CAS  PubMed  Google Scholar 

  • Haas CN, Kersten SP, Wright K, Frank MJ, Cidambi K (1997) Generalization of independent response model for toxic mixtures. Chemosphere 34:699–710

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964a) The genetical evolution of social behaviour I. J Theor Biol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964b) The genetical evolution of social behaviour II. J Theor Biol 7:17–52

    Article  CAS  PubMed  Google Scholar 

  • Heimpel AM, Angus TA (1959) The site of action of crystalliferous bacteria in lepidoptera. J Insect Pathol 1:152–170

    Google Scholar 

  • Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriksen NB, Carstensen J (2013) Long-term survival of Bacillus thuringiensis subsp. kurstaki in a field trial. Can J Microbiol 59:34–38

    Article  CAS  PubMed  Google Scholar 

  • Hendriksen NB, Hansen BM (2002) Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial. Can J Microbiol 48:256–261

    Article  CAS  PubMed  Google Scholar 

  • Hendriksen NB, Hansen BM, Johansen JE (2006) Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie Van Leeuwenhoek 89:239–249

    Article  CAS  PubMed  Google Scholar 

  • Hernandez E, Ramisse F, Ducoureau J (1998) Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36:2138–2139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW, Maiden MCJ, Priest FG, Barker M, Jiang LX, Cer RZ, Rilstone J, Peterson SN, Weyant RS, Galloway DR et al (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101:8449–8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itova-Aoyolo C, Drif L, DeBarjac H, Bossy JP, Leclant F, Frutos R (1995) Isolation of multiple species of Bacillus thuringiensis from a population of the European sunflower moth, Homoeosoma nebuella. Appl Environ Microbiol 61:4343–4347

    Google Scholar 

  • James C (2015) Global status of commercialized biotech/GM crops: 2015. Int Serv Aquisition Agri-Biotechol Appl 51–2015. http://www.isaaa.org/

  • Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    Article  CAS  PubMed  Google Scholar 

  • Johnston PR, Crickmore N (2009) Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm, Manduca sexta. Appl Environ Microbiol 75:5094–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RM, Masago Y, Bartrand T, Haas CN, Nicas M, Rose JB (2009) Characterizing the risk of infection from mycobacterium tuberculosis in commercial passenger aircraft using quantitative microbial risk assessment. Risk Anal 29:355–365

    Article  PubMed  Google Scholar 

  • Jung SC, Kim Y (2006) Synergistic effect of Entomopathogenic bacteria (Xenorhabdus sp and Photorhabdus temperata ssp temperata) on the pathogenicity of Bacillus thuringiensis ssp aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ Entomol 35:1584–1589

    Article  Google Scholar 

  • Kaur S, Singh A (2000) Natural occurrence of Bacillus thuringiensis in leguminous phylloplanes in the New Delhi region of India. World J Microbiol Biotechnol 16:679–682

    Article  Google Scholar 

  • Keim P, Gruendike JM, Klevytska AM, Schupp JM, Challacombe J, Okinaka R (2009) The genome and variation of Bacillus anthracis. Mol Asp Med 30:397–405

    Article  CAS  Google Scholar 

  • Kho MF, Bellier A, Balasubramani V, Hu Y, Hsu W, Nielsen-Leroux C, McGillivray SM, Nizet V, Aroian RV (2011) The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans. PLoS One 6:e29122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Cheon E, Wheeler K, Youn Y, Leighton T, Park C, Kim W, Chung S (2005) Determination of the most closely related bacillus isolates to Bacillus anthracis by multilocus sequence typing. Yale J Biol Med 78:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knell RJ, Begon M, Thompson DJ (1998) Host-pathogen population dynamics, basic reproductive rates and threshold densities. Oikos 81:299–308

    Article  Google Scholar 

  • Lacey L, Mulla MS, Dulmage HT (1978) Some factors affecting the pathogenicity of Bacillus thuringiensis Berliner against blackflies. Environ Entomol 7:583–588

    Article  Google Scholar 

  • Lechner S, Mayr R, Francis KP, Prüss BM, Kaplan T, Wiessner-Gunkel E, Stewart GS, Scherer S (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48:1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Q Lai, M Göker, JP Meier-Kolthoff, M Wang, Y Sun, L Wang, Z Shao (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:1–11

    Google Scholar 

  • Maduell P, Callejas R, Cabrera KR, Armengol G, Orduz S (2002) Distribution and characterization of Bacillus thuringiensis on the phylloplane of species of Piper (Piperaceae) in three altitudinal levels. Microb Ecol 44:144–153

    Article  CAS  PubMed  Google Scholar 

  • Maduell P, Armengol G, Llagostera M, Orduz S, Lindow S (2008) B. thuringiensis is a poor colonist of leaf surfaces. Microb Ecol 55:212–219

    Article  PubMed  Google Scholar 

  • Margulis L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA, Lo S-C (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95:1236–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monnerat RG, Soares CM, Capdeville G, Jones G, Martins ÉS, Praça L, Cordeiro BA, Braz SV, Dos Santos RC, Berry C (2009) Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Microb Biotechnol 2:512–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohba M, Aratake Y (1994) Comparative study of the frequency and flagellar serotype flora of Bacillus thuringiensis in soils and silkworm-breeding environments. J Appl Bacteriol 76:203–209

    Article  Google Scholar 

  • Perez C, Fernandez LE, Sun JG, Folch JL, Gill SS, Soberon M, Bravo A (2005) Bacillus thuringiensis subsp israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci USA 102:18303–18308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcar M, Caballero P (2000) Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. J Appl Microbiol 89:309–316

    Article  CAS  PubMed  Google Scholar 

  • Prasertphon S, Areekul P, Tanada Y (1973) Sporulation of Bacillus thuringiensis in cadavers. J Invertebr Pathol 21:205–207

    Article  Google Scholar 

  • Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragni A, Thiéry I, Deléclus A (1996) Characterization of six highly mosquitocidal Bacillus thuringiensis strains that do not belong to H-14 serotype. Curr Microbiol 32:48–54

    Article  CAS  PubMed  Google Scholar 

  • Ramarao N, Lereclus D (2005) The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell Microbiol 7:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    CAS  PubMed  Google Scholar 

  • Raymond B, Bonsall MB (2013) Cooperation and the evolutionary ecology of bacterial virulence: the Bacillus cereus group as a novel study system. BioEssays 35:706–716

    Article  PubMed  Google Scholar 

  • Raymond B, Davis D, Bonsall MB (2007) Competition and reproduction in mixed infections of pathogenic and non-pathogenic Bacillus spp. J Invertebr Pathol 96:151–155

    Article  PubMed  Google Scholar 

  • Raymond B, Elliot SL, Ellis RJ (2008a) Quantifying the reproduction of Bacillus thuringiensis HD-1 in cadavers and live larvae of Plutella xylostella. J Invertebr Pathol 98:307–313

    Article  PubMed  Google Scholar 

  • Raymond B, Lijek RS, Griffiths RI, Bonsall MB (2008b) Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. J Invertebr Pathol 99:103–111

    Article  CAS  PubMed  Google Scholar 

  • Raymond B, Johnston PR, Wright DJ, Ellis RJ, Crickmore N, Bonsall MB (2009) A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environ Microbiol 11:2556–2563

    Article  CAS  PubMed  Google Scholar 

  • Raymond B, Johnston PR, Nielsen-Leroux C, Lereclus D, Crickmore N (2010a) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194

    Article  CAS  PubMed  Google Scholar 

  • Raymond B, Wyres KL, Sheppard SK, Ellis RJ, Bonsall MB (2010b) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Path 6:e1000905

    Article  CAS  Google Scholar 

  • Raymond B, West SA, Griffin AS, Bonsall MB (2012) The dynamics of cooperative bacterial virulence in the field. Science 337:85–88

    Article  CAS  PubMed  Google Scholar 

  • Raymond B, Wright DJ, Crickmore N, Bonsall MB (2013) The impact of strain diversity and mixed infections on the evolution of resistance to Bacillus thuringiensis. Proc R Soc Lond B 280:20131497

    Article  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM et al (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    Article  CAS  PubMed  Google Scholar 

  • Ross-Gillespie A, Gardner A, West SA, Griffin AS (2007) Frequency dependence and cooperation: theory and a test with bacteria. Am Nat 170:331–342

    Article  PubMed  Google Scholar 

  • Ruan L, Crickmore N, Peng D, Sun M (2015) Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends Microbiol 23:341–346

    Article  CAS  PubMed  Google Scholar 

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    Article  PubMed  Google Scholar 

  • Saile E, Koehler TM (2006) Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol 72:3168–3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamitou SS, Ramisse FF, Brehélin MM, Bourguet DD, Gilois NN, Gominet MM, Hernandez EE, Lereclus DD (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology (UK) 146:2825–2832

    Article  CAS  Google Scholar 

  • Schnepfb E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Google Scholar 

  • Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H (2010) Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci USA 107:7359–7364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro-Ilan D, Raymond B (2016) Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes. Evol Appl 9:462–470

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel JP (2001) The mammalian safety of Bacillus thuringiensis based insecticides. J Invertebr Pathol 77:13–21

    Article  CAS  PubMed  Google Scholar 

  • Simões N, Caldas C, Rosa JS, Bonifassi E, Laumond C (2000) Pathogenicity caused by high virulent and low virulent strains of Steinernema carpocapsae to Galleria mellonella. J Invertebr Pathol 75:47–54

    Article  PubMed  Google Scholar 

  • Slamti L, Perchat S, Huillet E, Lereclus D (2014) Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins (Basel) 6:2239–2255

    Article  CAS  Google Scholar 

  • Smith RA, Couche GA (1991) The phylloplane as a source of Bacillus thuringiensis variants. Appl Environ Microbiol 57:311–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642

    Article  CAS  PubMed  Google Scholar 

  • Sorokin A, Candelon B, Guilloux K, Galleron N, Wackerow-Kouzova N, Ehrlich SD, Bourguet D, Sanchis V (2006) Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl Environ Microbiol 72:1569–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    Article  CAS  PubMed  Google Scholar 

  • Stenfors LP, Granum PE (2001) Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol Lett 197:223–228

    Article  CAS  PubMed  Google Scholar 

  • Strassmann JE, Queller DC (2011) Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci USA 108(Suppl 2):10855–10862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki MT, Lereclus D, Arantes OMN (2004) Fate of Bacillus thuringiensis strains in different insect larvae. Can J Microbiol 50:973–975

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE (1992) Evaluation of synergism among Bacillus thuringiensis toxins. Appl Environ Microbiol 58:3343–3346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsuka J, Kunimi Y (1998) Replication of Bacillus thuringiensis in larvae of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera : Pyralidae): growth, sporulation and insecticidal activity of parasporal crystals. Appl Entomol Zool 33:479–486

    Google Scholar 

  • Taylor PD (1992) Altruism in viscous populations – an inclusive fitness model. Evol Ecol 6:352–356

    Article  Google Scholar 

  • Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø A-B (2006) The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 101:579–593

    Article  CAS  PubMed  Google Scholar 

  • Turnbull PCB (2002) Introduction: anthrax history, disease and ecology. In: Koehler TM (ed) Anthrax. Springer, p 1–19

    Google Scholar 

  • van Frankenhuyzen K, Liu Y, Tonon A (2010) Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. J Invertebr Pathol 103:124–131

    Article  PubMed  Google Scholar 

  • van Leeuwen E, Neill SOA, Matthews A, Raymond B (2015) Making pathogens sociable: the emergence of high relatedness through limited host invasibility. ISME J 9:2328

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassileva M, Torii K, Oshimoto M, Okamoto A, Agata N, Yamada K, Hasegawa T, Ohta M (2006) Phylogenetic analysis of Bacillus cereus isolates from severe systemic infections using multilocus sequence typing scheme. Microbiol Immunol 50:743–749

    Article  CAS  PubMed  Google Scholar 

  • Velicer GJ, Kroos L, Lenski RE (2000) Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404:598–601

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Quist JC, Rogers HJ, Mahenthiralingam E, Berry C (2013) Bacillus thuringiensis colonises plant roots in a phylogeny-dependent manner. FEMS Microbiol Ecol 86:474–489

    Article  CAS  PubMed  Google Scholar 

  • Vilain S, Luo Y, Hildreth MB, Brözel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl Environ Microbiol 72:4970–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilas-Boas G, Sanchis V, Lereclus D, Lemos MVF, Bourguet D (2002) Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 68:1414–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilas-Boas G, Vilas-Boas LA, Lereclus D, Arantes OMN (2008) Bacillus thuringiensis conjugation under environmental conditions. FEMS Microbiol Ecol 24:369–374

    Google Scholar 

  • Wang X, Grewal PS (2002) Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biol Control 23:71–78

    Article  CAS  Google Scholar 

  • West SA, Buckling A (2003) Cooperation, virulence and siderophore production in bacterial parasites. Proc R Soc Lond B 270:37–44

    Article  Google Scholar 

  • West AW, Burges HD, Wyborn CH (1984) Effect of incubation in natural and autoclaved soil upon potency and viability of Bacillus thuringiensis. J Invertebr Pathol 44:121–127

    Article  Google Scholar 

  • West AW, Burges HD, Dixon TJ, Wyborn CH (1985) Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil – effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biol Biochem 17:657–665

    Article  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607

    Article  CAS  PubMed  Google Scholar 

  • West S, Diggle S, Buckling A, Gardner A, Griffin A (2007a) The social lives of microbes. Annu Rev Ecol Syst 38:53–77

    Article  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007b) Evolutionary explanations for cooperation. Curr Biol 17:R661–R672

    Article  CAS  PubMed  Google Scholar 

  • Wipat A, Harwood CR (1999) The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28:1–9

    Article  CAS  Google Scholar 

  • Yara K, Kunimi Y, Iwahana H (1997) Comparative studies of growth characteristic and competitive ability in Bacillus thuringiensis and Bacillus cereus in soil. Appl Entomol Zool 32:625–634

    Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeigler DR (1999) Bacillus genetic stock center catalog of strains, 7th edn. Part 2: Bacillus thuringiensis and Bacillus cereus. Ohio State University, Columbus

    Google Scholar 

  • Zheng J, Peng D, Song X, Ruan L, Mahillon J, Sun M (2013) Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis on the basis of the csaB gene reflects host source. Appl Environ Microbiol 79:3860–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Slamti L, Nielsen-Leroux C, Lereclus D, Raymond B (2014) The social biology of quorum-sensing in a naturalistic host pathogen system. Curr Biol 24:2417–2422

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Raymond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raymond, B. (2017). The Biology, Ecology and Taxonomy of Bacillus thuringiensis and Related Bacteria. In: Fiuza, L., Polanczyk, R., Crickmore, N. (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham. https://doi.org/10.1007/978-3-319-56678-8_2

Download citation

Publish with us

Policies and ethics