Skip to main content
Log in

Regulation of Hydrolytic Enzyme Activity in Aquatic Microbial Communities Hosted by Carnivorous Pitcher Plants

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Carnivorous pitcher plants Sarracenia purpurea host diverse eukaryotic and bacterial communities which aid in insect prey digestion, but little is known about the functional processes mediated by the microbial communities. This study aimed to connect pitcher community diversity with functional nutrient transformation processes, identifying bacterial taxa, and measuring regulation of hydrolytic enzyme activity in response to prey and alternative nutrient sources. Genetic analysis identified diverse bacterial taxa known to produce hydrolytic enzyme activities. Chitinase, protease, and phosphatase activities were measured using fluorometric assays. Enzyme activity in field pitchers was positively correlated with bacterial abundance, and activity was suppressed by antibiotics suggesting predominantly bacterial sources of chitinase and protease activity. Fungi, algae, and rotifers observed could also contribute enzyme activity, but fresh insect prey released minimal chitinase activity. Activity of chitinase and proteases was upregulated in response to insect additions, and phosphatase activity was suppressed by phosphate additions. Particulate organic P in prey was broken down, appearing as increasing dissolved organic and inorganic P pools within 14 days. Chitinase and protease were not significantly suppressed by availability of dissolved organic substrates, though organic C and N stimulated bacterial growth, resulting in elevated enzyme activity. This comprehensive field and experimental study show that pitcher plant microbial communities dynamically regulate hydrolytic enzyme activity, to digest prey nutrients to simpler forms, mediating biogeochemical nutrient transformations and release of nutrients for microbial and host plant uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adamec L (1997) Mineral nutrition of carnivorous plants: a review. Bot. Rev. 63:273–299

    Article  Google Scholar 

  2. Takahashi K, Suzuki T, Nishii W, Kubota K, Shibata C, Isobe T, Dohmae N (2011) A cysteine endopeptidase (“dionain”) is involved in the digestive fluid of Dionaea muscipula (venus’s fly-trap). Biosci. Biotechnol. Biochem. 75:346–348. https://doi.org/10.1271/bbb.100546

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi Y, Salcher MM, Ushio M, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, von Mering C, Pernthaler J, Shimizu KK (2011) In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes. PLoS One 6:e25144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adlassnig W, Peroutka M, Lendi T (2011) Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities. Ann. Bot. 107:181–194. https://doi.org/10.1093/aob/mcq238

    Article  PubMed  Google Scholar 

  5. Gotelli NJ, Ellison AM (2006) Food-web models predict species abundances in response to habitat change. PLoS Biol. 4:1869–1873

    Article  CAS  Google Scholar 

  6. Zander A, Bersier LF, Gray SM (2017) Effects of temperature variability on community structure in a natural microbial food web. Glob Change Biol 23:56–67. https://doi.org/10.1111/gcb.13374

    Article  Google Scholar 

  7. Cochran-Stafira DL, von Ende CN (1998) Integrating bacteria into food webs: studies with Sarracenia purpurea inquilines. Ecology 79:880–898

    Article  Google Scholar 

  8. Baiser B, Buckley HL, Gotelli NJ, Ellison AM (2013) Predicting food-web structure with metacommunity models. Oikos 122:492–506. https://doi.org/10.1111/j.1600-0706.2012.00005.x

    Article  Google Scholar 

  9. Peterson CN, Day S, Wolfe BE, Ellison AM, Kolter R, Pringle A (2008) A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ. Microbiol. 10:2257–2266

    Article  CAS  PubMed  Google Scholar 

  10. Gray SM (2012) Succession in the aquatic Sarracenia purpurea community: deterministic or driven by contingency? Aquat. Ecol. 46:487–499. https://doi.org/10.1007/s10452-012-9417-9

    Article  Google Scholar 

  11. Gallie DR, Chang SC (1997) Signal transduction in the carnivorous plant Sarracenia purpurea—regulation of secretory hydrolase expression during development and in response to resources. Plant Physiol. 115:1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hepburn JS, Jones FM, St John E (1920) The absorption of nutrients and allied phenomena in the pitchers of the Sarraceniaceae. Journal of the Franklin Institute 189:147–184

    Article  CAS  Google Scholar 

  13. Schulze W, Schulze ED, Pate JS, Gillison AN (1997) The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. Oecologia 112:464–471

    Article  CAS  PubMed  Google Scholar 

  14. Butler JL, Gotelli NJ, Ellison AM (2008) Linking the brown and green: nutrient transformation and fate in the Sarracenia microecosystem. Ecology 89:898–904

    Article  PubMed  Google Scholar 

  15. Gray SM, Akob DM, Green SJ, Kostka JE (2012) The bacterial composition within the Sarracenia purpurea model system: local scale differences and the relationship with the other members of the food web. PLoS One 7:e50969. https://doi.org/10.1371/journal.pone.0050969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siragusa AJ, Swenson JE, Casamatta DA (2007) Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data. Microb. Ecol. 54:324–331

    Article  CAS  PubMed  Google Scholar 

  17. Koopman MM, Fuselier DM, Hird S, Carstens BC (2010) The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. App Envir Micro 76:1851–1860. https://doi.org/10.1128/aem.02440-09

    Article  CAS  Google Scholar 

  18. Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3:401–425

    Article  Google Scholar 

  19. Chróst RJ (1991) Significance of bacterial ectoenzymes in aquatic environments. Hydrobiol 243:61–70

    Google Scholar 

  20. Souza CP, Almeida BC, Colwell RR, Rivera ING (2011) The importance of chitin in the marine environment. Mar. Biotechnol. 13:823–830. https://doi.org/10.1007/s10126-011-9388-1

    Article  CAS  Google Scholar 

  21. Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. Journal of Pharmacy and BioAllied Sciences 5:21–29. https://doi.org/10.4103/0975-7406.106559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kasprzewska A (2003) Plant chitinases—regulation and function. Cellular and Molecular Biol. Lett. 8:809–824

    CAS  Google Scholar 

  23. Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. J. Exp. Bot. 57:2775–2784

    Article  CAS  PubMed  Google Scholar 

  24. Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarraj S, Hedrich R, Werner C, Rennenberg H (2017) The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. New Phytol. 214:597–606. https://doi.org/10.1111/nph.14404

    Article  CAS  PubMed  Google Scholar 

  25. Rengefors K, Ruttenberg KC, Haupert CL, Taylor C, Howes BL, Anderson DM (2003) Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnol. Oceanogr. 48:1167–1175

    Article  CAS  Google Scholar 

  26. Dyhrman ST, Ruttenberg KC (2006) Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization. Limnol. Oceanogr. 51:1381–1390

    Article  CAS  Google Scholar 

  27. Sirova D, Adamec L, Vrba J (2003) Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytol. 159:669–675

    Article  CAS  PubMed  Google Scholar 

  28. Plachno BJ, Adamec L, Lichtscheidl IK, Peroutka M, Adlassnig W, Vrba J (2006) Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol. 8:813–820

    Article  CAS  PubMed  Google Scholar 

  29. An CI, Takekawa S, Okazawa A, Fukusaki E, Kobayashi A (2002) Degradation of a peptide in pitcher fluid of the carnivorous plant Nepenthes alata Blanco. Planta 215:472–477

    Article  CAS  PubMed  Google Scholar 

  30. Grossart HP, Ploug H (2001) Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46:267–277

    Article  CAS  Google Scholar 

  31. Berges JA, Falkowski PG (1998) Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol. Oceanogr. 43:129–135

    Article  CAS  Google Scholar 

  32. Nedoma J, Strojsova A, Vrba J, Komarkova J, Simek K (2003) Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ. Microbiol. 5:462–472

    Article  CAS  PubMed  Google Scholar 

  33. Young EB, Tucker RC, Pansch LA (2010) Alkaline phosphatase in freshwater Cladophora-epiphyte assemblages: regulation in response to phosphorus supply and localization. J. Phycol. 46:93–101. https://doi.org/10.1111/j.1529-8817.2009.00782.x

    Article  CAS  Google Scholar 

  34. Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M, Wallenstein M, Weintraub MN (2014) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117:5–21. https://doi.org/10.1007/s10533-013-9906-5

    Article  CAS  Google Scholar 

  35. Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11:1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x

    Article  PubMed  Google Scholar 

  36. Paisie TK, Miller TE, Mason OU (2014) Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea) leaves. PLoS One 9:e113384. https://doi.org/10.1371/journal.pone.0113384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bott T, Meyer GA, Young EB (2008) Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. New Phytol. 180:631–641. https://doi.org/10.1111/j.1469-8137.2008.02575.x

    Article  CAS  PubMed  Google Scholar 

  38. Suttle CA, Fuhrman JA (2010) Enumeration of virus particles in aquatic or sediment samples by epifluorescence microscopy. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology. ASLO, pp 145–153

    Chapter  Google Scholar 

  39. Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environmental Science & Technology 46:11459–11466. https://doi.org/10.1021/es303144n

    Article  CAS  Google Scholar 

  40. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8:186–194. https://doi.org/10.1101/gr.8.3.186

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267. https://doi.org/10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33:1633–1640. https://doi.org/10.1016/s0038-0717(01)00079-7

    Article  CAS  Google Scholar 

  43. Ueno H, Miyashita K, Sawada Y, Oba Y (1991) Assay of chitinase and N-acetylglucosaminidase activity in forest soils with 4-methylumbelliferyl derivatives. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 154:171–175. https://doi.org/10.1002/jpln.19911540304

    Article  CAS  Google Scholar 

  44. Gonzalez-Gil S, Keafer B, Jovine R, Aguilera A, Lu S, Anderson D (1998) Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar. Ecol. Prog. Ser. 164:21–35

    Article  CAS  Google Scholar 

  45. Fynan EF, Hunt MR, Dowling P, Auguste J, Smyth AP, Bradley PM (2009) Natural antibiotic resistance of bacteria isolated from a peat bog at Poutwater pond, Holden, Massachusetts. Bios 80:9–13. https://doi.org/10.1893/011.080.0105

    Article  CAS  Google Scholar 

  46. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  47. Menzel DW, Corwin N (1965) The measurment of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10:280–283

    Article  Google Scholar 

  48. Bledzki LA, Ellison AM (1998) Population growth and production of Habrotrocha rosa Donner (Rotifera : Bdelloidea) and its contribution to the nutrient supply of its host, the northern pitcher plant, Sarracenia purpurea L. (Sarraceniaceae). Hydrobiol 385:193–200

    Article  CAS  Google Scholar 

  49. Bittleston LS, Baker CCM, Strominger LB, Pringle A, Pierce NE (2016) Metabarcoding as a tool for investigating arthropod diversity in Nepenthes pitcher plants. Austral Ecology 41:120–132. https://doi.org/10.1111/aec.12271

    Article  Google Scholar 

  50. Gebuhr C, Pohlon E, Schmidt AR, Kusel K (2006) Development of microalgae communities in the phytotelmata of allochthonous populations of Sarracenia purpurea (Sarraceniaceae). Plant Biol. 8:849–860

    Article  CAS  PubMed  Google Scholar 

  51. Armitage DW (2017) Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community. ISME J. 11:2439–2451. https://doi.org/10.1038/ismej.2017.99

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zwart G, Crump BC, Agterveld M, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aq Microb Ecol 28:141–155. https://doi.org/10.3354/ame028141

    Article  Google Scholar 

  53. Lindquist JA (1975) Bacteriological and ecological observations of the northern pitcher plant, Sarracenia purpurea L., University of Wisconsin MS Thesis

  54. Krieger JR, Kourtev PS (2012) Bacterial diversity in three distinct sub-habitats within the pitchers of the northern pitcher plant, Sarracenia purpurea. FEMS Microbiol. Ecol. 79:555–567. https://doi.org/10.1111/j.1574-6941.2011.01240.x

    Article  CAS  PubMed  Google Scholar 

  55. Takeuchi Y, Chaffron S, Salcher MM, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, von Mering C, Pernthaler J, Shimizu KK (2015) Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes. Syst. Appl. Microbiol. 38:330–339. https://doi.org/10.1016/j.syapm.2015.05.006

    Article  PubMed  Google Scholar 

  56. Strojsova A, Dyhrman ST (2008) Cell-specific beta-N-acetylglucosaminidase activity in cultures and field populations of eukaryotic marine phytoplankton. FEMS Microbiol. Ecol. 64:351–361

    Article  CAS  PubMed  Google Scholar 

  57. Sharma BR, Martin MM, Shafter JA (1984) Alkaline proteases from the gut fluids of detritus-feeding larvae of the crane fly Tipula abdoinalis (Say) (Diptera, Tipulidae). Insect Biochemistry 14:37–44

    Article  CAS  Google Scholar 

  58. Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, Nemergut DR, Graham EB, Wallenstein MD (2015) Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 9:1693–1699. https://doi.org/10.1038/ismej.2014.252

    Article  CAS  PubMed  Google Scholar 

  59. Rengefors K, Pettersson K, Blenckner T, Anderson DM (2001) Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. J. Plankton Res. 23:435–443

    Article  CAS  Google Scholar 

  60. Luciano CS, Newell SJ (2017) Effects of prey, pitcher age, and microbes on acid phosphatase activity in fluid from pitchers of Sarracenia purpurea (Sarraceniaceae). PLoS One 12:e0181252. https://doi.org/10.1371/journal.pone.0181252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strojsova M, Vrba J (2007) Rotifer digestive enzymes: direct detection using the ELF technique. Hydrobiologia 593:159–165

    Article  CAS  Google Scholar 

  62. Sebastian M, Ammerman JW (2009) The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J. 3:563–572. https://doi.org/10.1038/ismej.2009.10

    Article  CAS  PubMed  Google Scholar 

  63. Hanson A, Berges J, Young E (2017) Virus morphological diversity and relationship to bacteria and chlorophyll across a freshwater trophic gradient in the Lake Michigan watershed. Hydrobiologia 794:93–108. https://doi.org/10.1007/s10750-016-3084-0

    Article  CAS  Google Scholar 

  64. Glud RN, Middelboe M (2004) Virus and bacteria dynamics of a coastal sediment: implication for benthic carbon cycling. Limnol. Oceanogr. 49:2073–2081. https://doi.org/10.4319/lo.2004.49.6.2073

    Article  Google Scholar 

  65. Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aq Microb Ecol 23:187–204. https://doi.org/10.3354/ame023187

    Article  Google Scholar 

  66. Adlassnig W, Peroutka M, Lang I, Lichtscheidl IK (2005) Glands of carnivorous plants as a model system in cell biological research. Acta Botanica Gallica 152:111–124

    Article  Google Scholar 

  67. Sinsabaugh RL, Hill BH, Shah JJF (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–U117. https://doi.org/10.1038/nature08632

    Article  CAS  PubMed  Google Scholar 

  68. Fish D, Hall DW (1978) Succession and stratification of aquatic insects inhabiting the leaves of the insectivorous pitcher plant, Sarracenia purpurea. Am. Midl. Nat. 99:172–183

    Article  Google Scholar 

  69. An CI, Fukusaki EI, Kobayashi A (2001) Plasma-membrane H+-ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 212:547–555

    Article  CAS  PubMed  Google Scholar 

  70. Strojsova A, Vrba J, Nedoma J, Simek K (2005) Extracellular phosphatase activity of freshwater phytoplankton exposed to different in situ phosphorus concentrations. Mar. Freshw. Res. 56:417–424

    Article  CAS  Google Scholar 

  71. Gray SM, Miller TE, Mouquet N, Daufresne T (2006) Nutrient limitation in detritus-based microcosms in Sarracenia purpurea. Hydrobiol 573:173–181

    Article  CAS  Google Scholar 

  72. Plachno BJ, Wolowski K (2008) Algae commensal community in Genlisea traps. Acta Soc. Bot. Pol. 77:77–86

    Google Scholar 

  73. Adlassnig W, Steinhauser G, Peroutka M, Musilek A, Sterba JH, Lichtscheidl IK, Bichler M (2009) Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants. Appl. Radiat. Isot. 67:2117–2122. https://doi.org/10.1016/j.apradiso.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  74. Wakefield AE, Gotelli NJ, Wittman SE, Ellison AM (2005) Prey addition alters nutrient stoichiometry of the carnivorous plant Sarracenia purpurea. Ecology 86:1737–1743

    Article  Google Scholar 

  75. Farnsworth EJ, Ellison AM (2008) Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. J. Ecol. 96:213–221

    Google Scholar 

  76. Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart G (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J. Bacteriol. 180:4435–4441

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Folse HJ, Allison SD (2012) Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates. Front. Microbiol. 3. https://doi.org/10.3389/fmicb.2012.00338

Download references

Acknowledgements

Research was supported by the UWM Field Station and support from the Office of Undergraduate Research to Jessica Sielicki, Addie Skillman, Jessica Mulligan, Lauren Engen, and Amy Rymaszewski. JS was also supported by UWM DIN fellowship. Terry Bott and Anne Opseth also helped with data collection. Jamie Smith and Heather Owen carried out SEM imaging. Jessica Vanderwalle helped with genetic analysis. Paul Engevold supported greenhouse experiments. We thank anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica B. Young.

Electronic Supplementary Material

ESM 1

(PDF 794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, E.B., Sielicki, J. & Grothjan, J.J. Regulation of Hydrolytic Enzyme Activity in Aquatic Microbial Communities Hosted by Carnivorous Pitcher Plants. Microb Ecol 76, 885–898 (2018). https://doi.org/10.1007/s00248-018-1187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1187-z

Keywords

Navigation