Skip to main content
Log in

Species Diversity and Population Dynamics of Entomopathogenic Fungal Species in the Genus Metarhizium—a Spatiotemporal Study

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We studied the species diversity and population genetic structure of isolates of fungi from the entomopathogenic genus Metarhizium that had been isolated from sugarcane crops and surrounding grass. Soil and leaf samples were taken on four sampling occasions over 13 months (October 2014–October 2015). Isolations were made using the Galleria mellonella baiting method and selective media. Phylogenetic placement of isolates was done by sequencing a fragment of the 5′ of the elongation factor 1-α gene (EF1-α). Population genetic structure was determined by analysing this sequence information using AMOVA and Haplotype network analyses. Genotypic diversity was studied using microsatellite genotyping. The most abundant species was M. anisopliae s.s. (80 isolates), then M. pingshaense (three isolates), and M. guizhouense (one isolate). More than 50% of the genetic variation was explained by the time the samples were collected regardless of plant host association. Some haplotypes were found on the first sampling date and then not found on subsequent sampling dates, while other haplotypes were found initially, disappeared, but then found again on the last sampling date. To the best of our knowledge, this is the first report of the population genetic structure of M. anisopliae species in time and space. The effect of abiotic factors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol. Control 43:145–155

    Article  Google Scholar 

  2. de Faria MR, Wraight SP (2007) Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control 43:237–256

    Article  Google Scholar 

  3. Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2:149–159

    Article  Google Scholar 

  4. Roy HE, Brodie EL, Chandler D, Goettel MS, Pell JK, Wajnberg E, Vega FE (2010) Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens. BioControl 55:1–6

    Article  Google Scholar 

  5. Meyling NV, Lübeck M, Buckley EP, Eilenberg J, Rehner SA (2009) Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Mol. Ecol. 18:1282–1293

    Article  CAS  PubMed  Google Scholar 

  6. Meyling NV, Pilz C, Keller S, Widmer F, Enkerli J (2012) Diversity of Beauveria spp. isolates from pollen beetles Meligethes aeneus in Switzerland. J Invertbr Pathol 109:76–82

    Article  Google Scholar 

  7. Kepler RM, Ugine TA, Maul JE, Cavigelli MA, Rehner SA (2015) Community composition and population genetics of insect pathogenic fungi in the genus Metarhizium from soils of a long-term agricultural research system. Environ. Microbiol. 17:2791–2804

    Article  PubMed  Google Scholar 

  8. Ormond EL, Thomas APM, Pugh PJA, Pell JK, Roy HE (2010) A fungal pathogen in time and space: the population dynamics of Beauveria bassiana in a conifer forest. FEMS Microb Ecol 74:146–154

    Article  CAS  Google Scholar 

  9. Rezende JM, Riguetti Zanardo AB, Lopes MS, Delalibera Jr I, Rehner SA (2015) Phylogenetic diversity of Brazilian Metarhizium associated with sugarcane agriculture. BioControl 60:495–505

    Article  Google Scholar 

  10. Bidochka MJ, Small CL (2005) Phylogeography of Metarhizium, an insect pathogenic fungus. In: Vega FE, Blackwell M (eds) Insect-fungal associations ecology and evolution. University Press, Oxford, pp. 28–50

    Google Scholar 

  11. Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530

    Article  CAS  PubMed  Google Scholar 

  12. Vega FE, Meyling NV, Luangsa-ard JJ, Blackwell M (2012) Fungal entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp. 171–219

    Chapter  Google Scholar 

  13. Hernández-Domínguez C, Guzmán-Franco AW, Carrillo-Benítez MG, Alatorre-Rosaa R, Rodriguez-Leyva E, Villanueva-Jiménez JA (2016a) Specific diversity of Metarhizium isolates infecting Aeneolamia spp. (Hemiptera: Cercopidae) in sugarcane plantations. Neotrop Entomol 45:80–87

    Article  PubMed  Google Scholar 

  14. Wyrebek M, Huber C, Sasan RK, Bidochka MJ (2011) Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology 157:2904–2911

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann G (1986) The Galleria bait method for detection of entomopathogenic fungi in soil. J. Appl. Entomol. 102:213–215

    Article  Google Scholar 

  16. Dolci P, Guglielmo F, Secchi F, Ozino OI (2006) Persistence and efficacy of Beauveria brongniartii strains applied as biocontrol agents against Melolontha melolontha in the valley of Aosta (Northwest Italy). J. Appl. Microbiol. 100:1063–1072

    Article  CAS  PubMed  Google Scholar 

  17. Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl 48:307–319

    Article  Google Scholar 

  18. Vänninen I, Tyni-Juslin J, Hokkanen H (2000) Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. BioControl 45:201–222

    Article  Google Scholar 

  19. Hernández-Domínguez C, Cerroblanco-Baxcajay ML, Alvarado-Aragón LU, Hernández-López G, Guzmán-Franco AW (2016b) Comparison of the relative efficacy of an insect baiting method and selective media for diversity studies of Metarhizium species in the soil. Biocontrol Sci. Tech. 26:707–717

    Article  Google Scholar 

  20. Fernandes KKE, Keyser AC, Rangel NED, Foster NR, Roberts WD (2010) CTC medium: a novel dodine-free selective medium for isolating entomopathogenic fungi especially Metarhizium acridum from soil. Biol. Control 54:197–205

    Article  Google Scholar 

  21. Rangel NED, Dettenmaier SJ, Fernandes EKK, Roberts DW (2010) Susceptibility of Metarhizium spp. and other entomopathogenic fungi to dodine-based selective media. Biocontrol Sci. Tech. 20:375–389

    Article  Google Scholar 

  22. Humber RA (2012) Identification of entomopathogenic fungi. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Academic Press, London, pp. 151–187

    Chapter  Google Scholar 

  23. Meyling NV, Eilenberg J (2006) Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric. Ecosyst. Environ. 113:336–341

    Article  Google Scholar 

  24. Pérez-González VH, Guzmán-Franco AW, Alatorre-Rosas R, Hernández-López J, Hernández-López A, Carrillo-Benitez MG, Baverstock J (2014) Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. J. Invertebr. Pathol. 119:54–61

    Article  PubMed  Google Scholar 

  25. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95–98

    CAS  Google Scholar 

  26. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamura K, Paterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  29. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  31. Excoffier L, Lischer HEL (2015) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  32. Oulevey C, Widmer F, Kölliker R, Enkerli J (2009) An optimized microsatellite marker set for detection of Metarhizium anisopliae genotype diversity on field and regional scales. Mycol. Res. 13:1016–1024

    Article  Google Scholar 

  33. Enkerli J, Kölliker R, Keller S, Widmer F (2005) Isolation and characterization of microsatellite markers from the entomopathogenic fungus Metarhizium anisopliae. Mol. Ecol. Notes 5:384–386

    Article  CAS  Google Scholar 

  34. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Storza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  CAS  PubMed  Google Scholar 

  35. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D. thesis University of Dublin, Ireland

  36. Nei M, Saito N (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425

    PubMed  Google Scholar 

  37. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  38. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  39. Steinwender BM, Enkerli J, Widmer F, Eilenberg J, Kristensen HL, Bodochke MJ, Meyling NV (2015) Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity. J. Invertebr. Pathol. 132:142–148

    Article  PubMed  Google Scholar 

  40. Muñiz-Reyes E, Guzmán-Franco AW, Sánchez-Escudero J, Nieto-Angel R (2014) Occurrence of entomopathogenic fungi in tejocote (Crataegus mexicana) orchard soils and their pathogenicity against Rhagoletis pomonella. J. Appl. Microbiol. 117:1450–1462

    Article  PubMed  Google Scholar 

  41. Bidochka MJ, Kamp AM, Levander TM, Dekoning J, De Croos JA (2001) Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl. Environ. Microbiol. 67:1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bruck DJ (2005) Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biol. Control 32:155–163

    Article  Google Scholar 

  43. Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crops Res 92:169–183

    Article  Google Scholar 

  44. Laclau PB, Laclau JP (2009) Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops 114:351–360

    Article  Google Scholar 

  45. Hu G, St. Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl. Environ. Microbiol. 68:6383–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyling NV, Hajek AE (2010) Principles from community and metapopulation ecology: application to fungal entomopathogens. BioControl 55:39–54

    Article  Google Scholar 

  47. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  48. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233–266

    Article  CAS  PubMed  Google Scholar 

  49. Brady NC, Weil RR (1999) The nature and property of soils. Prentice Hall, Upper Saddle Hall, NJ

    Google Scholar 

  50. Schneider S, Widmer F, Jacot K, Kölliker R, Enkerli J (2012) Spatial distribution of Metarhizium clade 1 in agricultural landscapes with arable land and different semi-natural habitats. Appl. Soil Ecol. 52:20–28

    Article  Google Scholar 

  51. FAO (2015) Crop Water Information: Sugarcane 2015. Available at: http://www.fao.org/nr/water/cropinfo_sugarcane.html [Accessed September 28, 2016]

  52. INIFAP (2016) Red Nacional de Estaciones Agrometeorológicas Automatizadas INIFAP. 2016. Available at: http://clima.inifap.gob.mx/LNMySR/Estaciones/ConsultaDiarios15Min?Estado=29&Estacion=38219 [Accessed September 16, 2016]

Download references

Acknowledgements

CHD received and PhD scholarship from CONACyT-Mexico. The authors are grateful to Dr. Stephen Rehner for kindly providing initial training to the first author in the amplification and sequencing of the EF1-α fragment in his laboratory. We are also grateful to Fabián Vázquez Moreno, Jorge Hernandez López and Stephanie Guzman Valencia for their valuable help during sampling, isolate collection and technical assistance for the microsatellite genotyping analysis. The authors are grateful to Drs. R. Alatorre-Rosas, E. Rodriguez-Leyva, M.G. Carrillo-Benitez and J.A. Villanueva-Jimenez for their valuable comments and suggestions during the initial conception of this research. No conflict of interest is declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel W. Guzmán-Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Domínguez, C., Guzmán-Franco, A.W. Species Diversity and Population Dynamics of Entomopathogenic Fungal Species in the Genus Metarhizium—a Spatiotemporal Study. Microb Ecol 74, 194–206 (2017). https://doi.org/10.1007/s00248-017-0942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0942-x

Keywords

Navigation