Skip to main content
Log in

Principles from community and metapopulation ecology: application to fungal entomopathogens

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Fungal entomopathogens are often studied within the context of their use for biological control, yet these natural enemies are also excellent subjects for studies of ecological interactions. Here, we present selected principles from community ecology and discuss these in relation to fungal entomopathogens. We discuss the relevance of apparent competition, food web construction, intraguild predation and density-mediated and trait-mediated indirect effects. Although current knowledge of community interactions involving fungal entomopathogens are limited, fungal entomopathogens can be important, interactive members of communities and the activities of fungal entomopathogens should be evaluated in the context of ecological principles. We also discuss aspects of metapopulation ecology and the application of these principles to fungal entomopathogens. Knowledge of ecological interactions is crucial if we are to understand and predict the effects of fungal entomopathogens on host populations and understand the interactions among fungal entomopathogens and other organisms in the communities in which they occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Phil Trans R Soc Lond Ser B Biol Sc 291:451–524

    Google Scholar 

  • Andreadis TG (1987) Transmission. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, UK, pp 159–178

    Google Scholar 

  • Antonovics J (2004) Long-term study of a plant-pathogen metapopulation. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier, Amsterdam, pp 471–488

    Google Scholar 

  • Barbosa P (1998) Conservation biological control. Academic Press, San Diego

    Google Scholar 

  • Baverstock J, Alderson PG, Pell JK (2005) Influence of the aphid pathogen Pandora neoaphidis on the foraging behaviour of the aphid parasitoid Aphidius ervi. Ecol Entomol 30:665–672

    Google Scholar 

  • Baverstock J, Baverstock KE, Clark SJ, Pell JK (2008) Transmission of Pandora neoaphidis in the presence of co-occurring arthropods. J Invertebr Pathol 98:356–359

    CAS  PubMed  Google Scholar 

  • Baverstock J, Roy HE, Pell JK (2009) Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors. BioControl. doi:10.1007/s10526-009-9238-5 (this SI)

  • Bischoff JF, Rehner SA, Humber RA (2006) Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia 98:737–745

    CAS  PubMed  Google Scholar 

  • Borer ET, Briggs CJ, Holt RD (2007) Predators, parasitoids, and pathogens: a cross-cutting examination of intraguild predation theory. Ecology 88:2681–2688

    PubMed  Google Scholar 

  • Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Ent Exp Appl 97:93–108

    Google Scholar 

  • Brown JK, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    CAS  PubMed  Google Scholar 

  • Bruck DJ (2009) Fungal entomopathogens in the rhizosphere. BioControl. doi:10.1007/s10526-009-9236-7 (this SI)

  • Bruck DJ, Lewis LC (2002a) Carpophilus freeman (Coleoptera: Nitidulidae) as a vector of Beauveria bassiana. J Invertebr Pathol 80:188–190

    PubMed  Google Scholar 

  • Bruck DJ, Lewis LC (2002b) Rainfall and crop residue effects on soil dispersion and Beauveria bassiana spread to corn. Appl Soil Ecol 20:183–190

    Google Scholar 

  • Bukovinszky T, van Veen FJF, Jongema Y, Dicke M (2008) Direct and indirect effects of resource quality on food web structure. Science 319:804–807

    CAS  PubMed  Google Scholar 

  • Burdon JJ, Ericson L, Müller WJ (1995) Temporal and spatial changes in a metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula ulmaria. J Ecol 83:979–989

    Google Scholar 

  • Dromph KM (2003) Collembolans as vectors of entomopathogenic fungi. Pedobiologia 47:245–256

    Google Scholar 

  • Dunkel FV, Jaronski ST (2003) Development of a bioassay system for the predator, Xylocoris flavipes (Heteroptera: Anthocoridae), and its use in subchronic toxicity/pathogenicity studies of Beauveria bassiana strain GHA. J Econ Entomol 96:1045–1053

    PubMed  Google Scholar 

  • Dwyer G, Elkinton JS, Hajek AE (1998) Spatial scale and the spread of a fungal pathogen of gypsy moth. Am Nat 152:485–494

    CAS  PubMed  Google Scholar 

  • Eilenberg J (2002) Biology of fungi from the order Entomophthorales. DSc thesis. The Royal Veterinary and Agricultural University, Denmark

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Google Scholar 

  • Ekesi S, Shah PA, Clark SJ, Pell JK (2005) Conservation biological control with the fungal pathogen Pandora neoaphidis: implications of aphid species, host plant and predator foraging. Agric Forest Entomol 7:21–30

    Google Scholar 

  • Enkerli J, Widmer F (2009) Molecular ecology of fungal entomopathogens: molecular genetic tools and their applications in population and fate studies. BioControl. doi:10.1007/s10526-009-9251-8 (this SI)

  • Ericson L, Burdon JJ, Müller WJ (1999) Spatial and temporal dynamics of epidemics of the rust fungus Uromyces valerianae on populations of its host Valeriana salina. J Ecol 87:649–658

    Google Scholar 

  • Feng MG, Chen C, Shang SW, Ying SH, Shen ZC, Chen XX (2007) Aphid dispersal flight disseminates fungal pathogens and parasitoids as natural control agents of aphids. Ecol Entomol 32:97–104

    Google Scholar 

  • Fernández-García E, Fitt BDL (1993) Dispersal of the entomopathogen Hirsutella cryptosclerotium by simulated rain. J Invertebr Pathol 61:39–43

    Google Scholar 

  • Fuxa JR, Tanada Y (1997) Epizootiology of insect diseases. Wiley, NY

    Google Scholar 

  • Grenfell BT, Bjørnstad ON, Kappey J (2001) Travelling waves and spatial hierarchies in measles epidemics. Nature 414:716–723

    CAS  PubMed  Google Scholar 

  • Hajek AE, Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Google Scholar 

  • Hajek AE, Humber RA, Elkinton JS (1995) The mysterious origin of Entomophaga maimaiga in North America. Am Entomol 41:31–42

    Google Scholar 

  • Hajek AE, Elkinton JS, Witcosky JJ (1996) Introduction and spread of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) along the leading edge of gypsy moth (Lepidoptera: Lymantriidae) spread. Environ Entomol 25:1235–1247

    Google Scholar 

  • Hajek AE, Olsen CH, Elkinton JS (1999) Dynamics of airborne conidia of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales). Biol Contr 16:111–117

    Google Scholar 

  • Hanski I, Simberloff D (1997) The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, San Diego, pp 5–26

    Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect populations. Nature 353:255–258

    Google Scholar 

  • Hastings A (1977) Spatial heterogeneity and the stability of predator-prey systems. Theor Pop Biol 12:37–48

    CAS  Google Scholar 

  • Hastings A (1980) Disturbance co-existence, history, and competition for space. Theor Ecol 18:363–373

    Google Scholar 

  • Hatcher MJ, Dick JTA, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271

    PubMed  Google Scholar 

  • Hemmati F, Pell JK, McCartney HA, Deadman ML (2001) Airborne concentrations of conidia of Erynia neoaphidis above cereal fields. Mycol Res 105:485–489

    Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theor Pop Biol 12:197–229

    CAS  Google Scholar 

  • Holt RD (1997) Community modules. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, London, pp 333–350

    Google Scholar 

  • Holt RD (2000) Trophic cascades in terrestrial ecosystems. Reflections on Polis et al. Trends Ecol Evol 15:444–445

    PubMed  Google Scholar 

  • Holt RD, Dobson AP (2006) Extending the principles of community ecology to address the epidemiology of host-pathogen systems. In: Collinge SK, Ray C (eds) Disease ecology—community structure and pathogen dynamics. Oxford University Press, Oxford, pp 6–27

    Google Scholar 

  • Holt RD, Hochberg ME (2001) Indirect interactions, community modules and biological control: a theoretical perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect effects of biological control. CABI, Wallingford, pp 13–38

    Google Scholar 

  • Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520

    Google Scholar 

  • Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:745–764

    Google Scholar 

  • Hu G, Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Env Microbiol 68:6383–6387

    CAS  Google Scholar 

  • Hughes WOH, Petersen KS, Ugelvig LV, Pedersen D, Thomsen L, Poulsen M, Boomsma JJ (2004) Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants. BMC Evol Biol 4:45. doi:10.1186/1471-2148-4-45

    CAS  PubMed  Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. Progress, problems and potential. CABI, Wallingford, pp 23–69

    Google Scholar 

  • Jensen AB, Thomsen L, Eilenberg J (2001) Intraspecific variation and host specificity of Entomophthora muscae sensu stricto isolates revealed by random amplified polymorphic DNA, universal primed PCR, PCR-restriction fragment length polymorphism, and conidial morphology. J Invertebr Pathol 78:251–259

    CAS  PubMed  Google Scholar 

  • Kamata N (2000) Population dynamics of the beech caterpillar, Syntypistis punctatella, and biotic and abiotic factors. Popul Ecol 42:267–278

    Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2007) Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginia. Biol Contr 40:327–332

    Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2008) Evaluation of Lecanicillium longisporum, Vertalec for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. Biol Contr 45:404–409

    Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    PubMed  Google Scholar 

  • Laine A-L, Hanski I (2006) Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J Ecol 94:17–226

    Google Scholar 

  • Lefevre T, Lebarbenchon C, Gauthier-Clerc M, Misse D, Poulin R, Thomas F (2009) The ecological significance of manipulative parasites. Trends Ecol Evol 24:41–48

    PubMed  Google Scholar 

  • Lehman CL, Tilman D (1997) Competition in spatial habitats. In: Tilman D, Kareiva P (eds) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, pp 185–203

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Contr 43:145–155

    Google Scholar 

  • Meyling NV, Pell JK (2006) Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecol Entomol 31:162–171

    Google Scholar 

  • Meyling NV, Pell JK, Eilenberg J (2006) Dispersal of Beauveria bassiana by the activity of nettle insects. J Invertebr Pathol 93:121–126

    PubMed  Google Scholar 

  • Meyling NV, Lubeck M, Buckley EP, Eilenberg J, Rehner SA (2009) Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Mol Ecol 18:1282–1293

    CAS  PubMed  Google Scholar 

  • Monzón AJ, Guharay F, Klingen I (2008) Natural occurrence of Beauveria bassiana in Hypothenemus hampei (Coleoptera: Curculionidae) populations in unsprayed coffee fields. J Invertebr Pathol 97:34–141

    Google Scholar 

  • Mugglin AS, Cressie N, Gemmell I (2000) Hierarchical statistical modeling of influenza-epidemic dynamics in space and time. Stat Med 21:2703–2721

    Google Scholar 

  • Müller CB, Godfray HCJ (1997) Apparent competition between two aphid species. J Anim Ecol 66:57–64

    Google Scholar 

  • Müller CB, Godfray HCJ (1999) Indirect interactions in aphid-parasitoid communities. Res Popul Ecol 41:93–106

    Google Scholar 

  • Nakashima Y, Birkett MA, Pye BJ, Pickett JA, Powell W (2004) The role of semiochemicals in the avoidance of the seven-spot ladybird Coccinella septempunctata by the aphid parasitoid Aphidius ervi. J Chem Ecol 30:1103–1116

    CAS  PubMed  Google Scholar 

  • Okuyama T, Bolker BM (2007) On quantitative measures of indirect interactions. Ecol Lett 10:264–271

    PubMed  Google Scholar 

  • Onstad DW, Carruthers RI (1990) Epizootiological models of insect diseases. Annu Rev Entomol 35:399–419

    Google Scholar 

  • Ormond E (2007) Overwintering interactions between Coccinella septempunctata and Beauveria bassiana. PhD thesis. Anglia Ruskin University, Cambridge, UK

  • Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP (2003) Keeping the herd healthy and alert: implications of predator control for infectious disease. Ecol Lett 6:797–802

    Google Scholar 

  • Pell JK, Vandenberg JD (2002) Interactions among the aphid Diuraphis noxia, the entomopathogenic fungus Paecilomyces fumosoroseus and the coccinellid Hippodamia convergens. Biocontr Sci Technol 12:217–224

    Google Scholar 

  • Pell JK, Pluke R, Clark SJ, Kenward MG, Alderson PG (1997) Interactions between two aphid natural enemies, the entomopathogenic fungus Erynia neoaphidis Remaudière and Hennebert (Zygomycetes: Entomophthorales) and the predatory beetle Coccinella septempunctata L. (Coleoptera: Coccinellidae). J Invertebr Pathol 69:261–268

    Google Scholar 

  • Pell JK, Steinkraus D, Hannam, J (2009) Conservation biological control using fungal entomopathogens. BioControl. doi:10.1007/s10526-009-9245-6 (this SI)

  • Perrin RM (1976) The population dynamics of the stinging nettle aphid, Microlophium carnosum (Bukt.). Ecol Entomol 1:31–40

    Google Scholar 

  • Polis GA, Holt RD (1992) Intraguild predation—the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154

    Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation—potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Google Scholar 

  • Pope T, Croxson E, Pell JK, Godfray HCJ, Muller CB (2002) Apparent competition between two species of aphid via the fungal pathogen Erynia neoaphidis and its interaction with the aphid parasitoid Aphidius ervi. Ecol Entomol 27:196–203

    Google Scholar 

  • Poprawski TJ, Carruthers RI, Speese J, Vacek DC, Wendel LE (1997) Early-season applications of the fungus Beauveria bassiana and introduction of the hemipteran predator Perillus bioculatus for control of Colorado potato beetle. Biol Control 10:48–57

    Google Scholar 

  • Powell W, Wilding N, Brobyn PJ, Clark SJ (1986) Interference between parasitoids [Hym, Aphidiidae] and fungi [Entomophthorales] attacking cereal aphids. Entomophaga 31:293–302

    Google Scholar 

  • Quesada-Moraga E, Martin-Carballo I, Garrido-Jurado I, Santiago-Alvarez C (2008) Horizontal transmission of Metarhizium anisopliae among laboratory populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Biol Control 47:115–124

    Google Scholar 

  • Raffel TR, Martin LB, Rohr JR (2008) Parasites as predators: unifying natural enemy ecology. Trends Ecol Evol 23:610–618

    PubMed  Google Scholar 

  • Rehner SA (2005) Phylogenetics of the insect pathogenic genus Beauveria. In: Vega FE, Blackwell M (eds) Insect-fungal associations—ecology and evolution. Oxford University Press, New York, pp 3–27

    Google Scholar 

  • Rehner SA, Buckley EP (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98

    CAS  PubMed  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents—theory and evidence. Biol Control 5:303–335

    Google Scholar 

  • Roy HE, Cottrell TE (2008) Forgotten natural enemies: Interactions between coccinellids and insect-parasitic fungi. Eur J Entomol 105:391–398

    Google Scholar 

  • Roy HE, Pell JK, Clark SJ, Alderson PG (1998) Implications of predator foraging on aphid pathogen dynamics. J Invertebr Pathol 71:236–247

    CAS  PubMed  Google Scholar 

  • Roy HE, Pell JK, Alderson PG (2001) Targeted dispersal of the aphid pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella septempunctata. Biocontrol Sci Tech 11:99–110

    Google Scholar 

  • Schmitz OJ (2008) Effects of predator hunting mode on grassland ecosystem function. Science 319:952–954

    CAS  PubMed  Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotech 61:413–423

    CAS  Google Scholar 

  • Shimazu M, Sato H, Maehara N (2002) Density of the entomopathogenic fungus, Beauveria bassiana Vuillemin (Deuteromycotina: Hyphomycetes) in forest air and soil. Appl Entomol Zool 37:19–26

    Google Scholar 

  • Six DL, Mullens BA (1996) Distance of conidial discharge of Entomophthora muscae and Entomophthora schizophorae (Zygomycotina: Entomophthorales). J Invertebr Pathol 67:253–258

    PubMed  Google Scholar 

  • Steenberg T, Langer V, Esbjerg P (1995) Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields. Entomophaga 40:77–85

    Google Scholar 

  • Steinkraus DC, Howard MN, Hollingsworth RG, Boys GL (1999) Infection of sentinel cotton aphids (Homoptera: Aphididae) by aerial conidia of Neozygites fresenii (Entomophthorales: Neozygitaceae). Biol Control 14:131–135

    Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, San Diego

    Google Scholar 

  • Thrall PH, Godfree R, Burdon JJ (2003) Influence of spatial structure on pathogen colonization and extinction: a test using an experimental metapopulation. Plant Pathol 52:350–361

    Google Scholar 

  • Todorova SI, Cloutier C, Cote JC, Coderre D (2002) Pathogenicity of six isolates of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina, Hyphomycetes) to Perillus bioculatus (F) (Hem., Pentatomidae). J Appl Entomol 126:182–185

    Google Scholar 

  • van Veen FJF, van Holland PD, Godfray HCJ (2005) Stable coexistence in insect communities due to density- and trait-mediated indirect effects. Ecology 86:1382–1389

    Google Scholar 

  • van Veen FJF, Memmot J, Godfray HCJ (2006a) Indirect effects, apparent competition and biological control. In: Brodeur J, Boivin G (eds) Trophic and guild interactions in biological control. Springer, The Netherlands, pp 145–170

    Google Scholar 

  • van Veen FJF, Morris RJ, Godfray HCJ (2006b) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208

    PubMed  Google Scholar 

  • van Veen FJF, Müller CB, Pell JK, Godfray HCJ (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77:191–200

    PubMed  Google Scholar 

  • Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:2689–2696

    PubMed  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:1–11

    Google Scholar 

  • Vestergaard S, Eilenberg J (2000) Persistence of released Metarhizium anisopliae in soil and prevalence in ground and rove beetles. In: Proceedings of the 7th European meeting of the IOBC/WPRS working group: insect pathogens and insect parasitic nematodes, entitled ‘Capturing the potential of biological control’, vol 23, pp 181–185, Vienna, Austria. 22–26 March 1999

  • Weseloh RM (2004) Effect of conidial dispersal of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) on survival of its gypsy moth (Lepidoptera: Lymantriidae) host. Biol Control 29:138–144

    Google Scholar 

  • Wraight SP, Inglis GD, Goettel MS (2007) Fungi. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 223–248

    Google Scholar 

  • Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Tech 17:553–596

    Google Scholar 

  • Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Tech 17:879–920

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai V. Meyling.

Additional information

Handling Editor: Dr. Helen Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyling, N.V., Hajek, A.E. Principles from community and metapopulation ecology: application to fungal entomopathogens. BioControl 55, 39–54 (2010). https://doi.org/10.1007/s10526-009-9246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9246-5

Keywords

Navigation