Skip to main content
Log in

Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin–Benson–Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302:58–61

    Article  CAS  Google Scholar 

  2. Jannasch HW (1984) Chemosynthesis: the nutritional basis for life at deep-sea vents. Oceanus 27:73–78

    Google Scholar 

  3. Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Marine biology—evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257. doi:10.1126/science.1067361

    Article  PubMed  Google Scholar 

  4. Van Dover CL, Fry B (1989) Stable isotopic compositions of hydrothermal vent organisms. Mar Biol 102:257–263

    Article  Google Scholar 

  5. Campbell BJ, Cary SC (2004) Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol 70:6282–6289. doi:10.1128/AEM.70.10.6282-6289.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zerkle AL, House CH, Brantley SL (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305:467–502. doi:10.2475/ajs.305.6-8.467

    Article  CAS  Google Scholar 

  7. Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson KH, Horikoshi K (2004) Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413. doi:10.1128/aem.70.4.2404-2413.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Distribution, phylogenetic diversity and physiological characteristics of Epsilonproteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632. doi:10.1111/j.1462-2920.2005.00856.x

    Article  CAS  PubMed  Google Scholar 

  9. Ferrera I, Longhorn S, Banta AB, Liu Y, Preston D, Reysenbach AL (2007) Diversity of 16S rRNA gene, ITS region and aclB gene of the Aquificales. Extremophiles 11:57–64. doi:10.1007/s00792-006-0009-2

    Article  CAS  PubMed  Google Scholar 

  10. Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ Microbiol 8:37–49. doi:10.1111/j.1462-2920.2005.00884.x

    Article  CAS  PubMed  Google Scholar 

  11. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468. doi:10.1038/nrmicro1414

    Article  CAS  PubMed  Google Scholar 

  12. Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S, Suzuki Y, Inagaki F, Horikoshi K (2005) Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microbiol 71:7310–7320. doi:10.1128/aem.71.11.7310-7320.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem Geol 224:5–39. doi:10.1016/j.chemgeo.2005.07.021

    Article  CAS  Google Scholar 

  14. Wang L, Cheung MK, Kwan HS, Hwang J-S, Wong CK (2015) Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. J Basic Microbiol :1308–1318. doi: 10.1002/jobm.201400811

  15. Giovannelli D, d’Errico G, Manini E, Yakimov M, Vetriani C (2013) Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). Front Microbiol 4:184. doi:10.3389/fmicb.2013.00184

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tang K, Liu K, Jiao N, Zhang Y, Chen CT (2013) Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. PLoS One 8, e72958. doi:10.1371/journal.pone.0072958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andreotti R, Perez de Leon AA, Dowd SE, Guerrero FD, Bendele KG, Scoles GA (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol 11:6. doi:10.1186/1471-2180-11-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campbell BJ, Stein JL, Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69:5070–5078. doi:10.1128/aem.69.9.5070-5078.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Watson GMF, Tabita FR (1997) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22. doi:10.1016/s0378-1097(96)00417-x

    Article  CAS  PubMed  Google Scholar 

  20. Elsaied H, Naganuma T (2001) Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 67:1751–1765. doi:10.1128/aem.67.4.1751-1765.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Q, Quensen JF, Fish JA, Lee TK, Sun YN, Tiedje JM, Cole JR (2013) Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. Mbio 4. doi: 10.1128/mBio.00592-13

  23. Huegler M, Gaertner A, Imhoff JF (2010) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73:526–537. doi:10.1111/j.1574-6941.2010.00919.x

    CAS  Google Scholar 

  24. Sievert SM, Hugler M, Taylor CD, Wirsen CO (2008) Sulfur oxidation at deep-sea hydrothermal vents. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, Berlin Heidelberg, pp 238–258

    Chapter  Google Scholar 

  25. Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14. doi:10.1111/j.1574-6941.2008.00502.x

    Article  CAS  PubMed  Google Scholar 

  26. Brinkhoff T, Sievert SM, Kuever J, Muyzer G (1999) Distribution and diversity of sulfur-oxidizing Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Appl Environ Microbiol 65:3843–3849

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maugeri TL, Lentini V, Gugliandolo C, Italiano F, Cousin S, Stackebrandt E (2009) Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy). Extremophiles 13:199–212. doi:10.1007/s00792-008-0210-6

    Article  CAS  PubMed  Google Scholar 

  28. Lentini V, Gugliandolo C, Bunk B, Overmann J, Maugeri TL (2014) Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by illumina sequencing technology. Curr Microbiol 69:457–466. doi:10.1007/s00284-014-0609-5

    Article  CAS  PubMed  Google Scholar 

  29. Meyer-Dombard DR, Price RE, Pichler T, Amend JP (2012) Prokaryotic populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle Island, Papua New Guinea. Geomicrobiol J 29:1–17. doi:10.1080/01490451.2010.520073

    Article  CAS  Google Scholar 

  30. Chen CA, Zeng Z, Kuo F, Yang TF, Wang B-J, Tu Y-Y (2005) Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chem Geol 224:69–81. doi:10.1016/j.chemgeo.2005.07.022

    Article  CAS  Google Scholar 

  31. Chen CA, Wang B, Huang J, Lou J, Kuo F, Tu Y, Tsai H (2005) Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Acta Oceanol Sin 24:125–133

    CAS  Google Scholar 

  32. Hugler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria. J Bacteriol 187:3020–3027. doi:10.1128/jb.187.9.3020-3027.2005

    Article  PubMed  PubMed Central  Google Scholar 

  33. Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482. doi:10.1099/ijs.0.03042-0

    Article  CAS  PubMed  Google Scholar 

  34. Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci U S A 104:12146–12150. doi:10.1073/pnas.0700687104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sievert SM, Scott KA, Klotz MG, Chain PSG, Hauser LJ, Hemp J, Hugler M, Land M, Lapidus A, Larimer FW, Lucas S, Malfatti SA, Meyer F, Paulsen IT, Ren Q, Simon J (2008) Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol 74:1145–1156. doi:10.1128/aem.01844-07

    Article  CAS  PubMed  Google Scholar 

  36. Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A 55:928–934. doi:10.1073/pnas.55.4.928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuchs G, Stupperich E, Eden G (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71. doi:10.1007/bf00422307

    Article  CAS  Google Scholar 

  38. Hugler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173. doi:10.1007/s00203-002-0512-5

    Article  PubMed  Google Scholar 

  39. Spear JR, Walker JJ, McCollom TM, Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci U S A 102:2555–2560. doi:10.1073/pnas.0409574102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hugler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM (2007) Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol 9:81–92. doi:10.1111/j.1462-2920.2006.01118.x

    Article  CAS  PubMed  Google Scholar 

  41. Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form II RuBisCO in dinoflagellates. Science 268:1622–1624. doi:10.1126/science.7777861

    Article  CAS  PubMed  Google Scholar 

  42. Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28. doi:10.1023/a:1006211417981

    Article  CAS  Google Scholar 

  43. Badger MR, Bek EJ (2008) Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59:1525–1541. doi:10.1093/jxb/erm297

    Article  CAS  PubMed  Google Scholar 

  44. Spiridonova EM, Berg IA, Kolganova TV, Ivanovsky RN, Kuznetsov BB, Tourova TP (2004) An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Mikrobiologiya 73:377–387

    CAS  Google Scholar 

  45. Yousuf B, Sanadhya P, Keshri J, Jha B (2012) Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 12:150. doi:10.1186/1471-2180-12-150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres J, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61. doi:10.1038/nbt923

    Article  CAS  PubMed  Google Scholar 

  47. Huegler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu Rev Mar Sci 3:261–289. doi:10.1146/annurev-marine-120709-142712

    Article  Google Scholar 

  48. Tarasov VG (2006) Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific. Adv Mar Biol 50:267–421. doi:10.1016/s0065-2881(05)50004-x

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Zhao Z, Chen C-TA, Tang K, Su J, Jiao N (2012) Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems. PLoS One 7, e44393. doi:10.1371/journal.pone.0044593

    Article  Google Scholar 

Download references

Acknowledgements

We thank students and technicians in Prof. Jiang-Shiou Hwang’s laboratory for their assistance with sample collection in Kueishan Island. We are also grateful to Dr. Patrick Law for his assistance with pyrosequencing. Mr. Kwok Chu Cheung and colleagues at the Simon FS Li Marine Science Laboratory, CUHK, provided valuable support and help. This research was supported by a Direct Grant for Research from the Research Committee of The Chinese University of Hong Kong. Research in Taiwan was supported by the National Science Council of Taiwan, grant No. NSC 101-2611-M-019-011, NSC 100-2611-M-019-010, and NSC 99-2611-M-019-009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Cheung, M.K., Liu, R. et al. Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan. Microb Ecol 73, 571–582 (2017). https://doi.org/10.1007/s00248-016-0898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0898-2

Keywords

Navigation