Skip to main content

Advertisement

Log in

The Bacterial Community Structure and Dynamics of Carbon and Nitrogen when Maize (Zea mays L.) and Its Neutral Detergent Fibre Were Added to Soil from Zimbabwe with Contrasting Management Practices

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Water infiltration, soil carbon content, aggregate stability and yields increased in conservation agriculture practices compared to conventionally ploughed control treatments at the Henderson research station near Mazowe (Zimbabwe). How these changes in soil characteristics affect the bacterial community structure and the bacteria involved in the degradation of applied organic material remains unanswered. Soil was sampled from three agricultural systems at Henderson, i.e. (1) conventional mouldboard ploughing with continuous maize (conventional tillage), (2) direct seeding with a Fitarelli jab planter and continuous maize (direct seeding with continuous maize) and (3) direct seeding with a Fitarelli jab planter with rotation of maize sunn hemp (direct seeding with crop rotation). Soil was amended with young maize plants or their neutral detergent fibre (NDF) and incubated aerobically for 56 days, while C and N mineralization and the bacterial community structure were monitored. Bacillus (Bacillales), Micrococcaceae (Actinomycetales) and phylotypes belonging to the Pseudomonadales were first degraders of the applied maize plants. At day 3, Streptomyces (Actinomycetales), Chitinophagaceae ([Saprospirales]) and Dyella (Xanthomonadales) participated in the degradation of the applied maize and at day 7 Oxalobacteraceae (Burkholderiales). Phylotypes belonging to Halomonas (Oceanospirillales) were the first degraders of NDF and were replaced by Phenylobacterium (Caulobacterales) and phylotypes belonging to Pseudomonadales at day 3. Afterwards, similar bacterial groups were favoured by application of NDF as they were by the application of maize plants, but there were also clear differences. Phylotypes belonging to the Micrococcaceae and Bacillus did not participate in the degradation of NDF or its metabolic products, while phylotypes belonging to the Acidobacteriaceae participated in the degradation of NDF but not in that of maize plants. It was found that agricultural practices had a limited effect on the bacterial community structure, but application of organic material altered it substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thierfelder C, Wall PC (2012) Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe. Soil Use Manag 28:209–220. doi:10.1111/j.1475-2743.2012.00406.x

    Article  Google Scholar 

  2. Nyakudya IW, Stroosnijder L (2015) Conservation tillage of rainfed maize in semi-arid Zimbabwe: a review. Soil Tillage Res 145:184–197. doi:10.1016/j.still.2014.09.003

    Article  Google Scholar 

  3. Thierfelder C, Wall PC (2009) Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res 105:217–227. doi:10.1016/j.still.2009.07.007

    Article  Google Scholar 

  4. Ramírez-Villanueva DA, Bello-López JM, Navarro–Noya YE, Luna-Guido M, Verhulst N, Govaerts B, Dendooven L (2015) Bacterial community structure in maize residue amended soil with contrasting management practices. Appl Soil Ecol 90:49–59. doi:10.1016/j.apsoil.2015.01.010

    Article  Google Scholar 

  5. Corbeels M, de Graaff J, Ndah TH, Penot E, Baudron F, Naudin K, Andrieu N, Chirat G, Schuler J, Nyagumbo I, Rusinamhodzi L, Traore K, Mzoba HD, Adolwa IS (2014) Understanding the impact and adoption of conservation agriculture in Africa: a multi-scale analysis. Agric Ecosyst Environ 187:155–170. doi:10.1016/j.agee.2013.10.011

    Article  Google Scholar 

  6. Ngwira A, Johnsen FH, Aune JB, Mekuria M, Thierfelder C (2014) Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi. J Soil Water Conserv 69:107–119. doi:10.2489/jswc.69.2.107

    Article  Google Scholar 

  7. Nyakudya IW, Stroosnijder L, Nyagumbo I (2014) Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe. Agric Water Manag 141:30–46. doi:10.1016/j.agwat.2014.04.010

    Article  Google Scholar 

  8. Thierfelder C, Matemba-Mutasa R, Rusinamhodzi L (2015) Yield response of maize (Zea mays L.) to conservation agriculture cropping system in southern Africa. Soil Tillage Res 146:230–242. doi:10.1016/j.still.2014.10.015

    Article  Google Scholar 

  9. Thierfelder C, Rusinamhodzi L, Ngwira AR, Mupangwa W, Nyagumbo I, Kassie GT, Cairns JE (2015) Conservation agriculture in southern Africa: advances in knowledge. Renew Agric Food Syst 30:328–348. doi:10.1017/S1742170513000550

    Article  Google Scholar 

  10. Nezomba H, Mtambanengwe F, Tittonell P, Mapfumo P (2015) Point of no return? Rehabilitating degraded soils for increased crop productivity on smallholder farms in eastern Zimbabwe. Geoderma 239:143–155. doi:10.1016/j.geoderma.2014.10.006

    Article  Google Scholar 

  11. Wall PC, Thierfelder C, Ngwira A, Govaerts B, Nyagumbo I, Baudron F (2013) Conservation agriculture in eastern and southern Africa. In: Jat RA, Sahrawat KL, Kassam AH (eds) Conservation agriculture: global prospects and challenges. CABI, Wallingford Oxfordshire OX10 8DE, UK

    Google Scholar 

  12. Ngwira AR, Thierfelder C, Lambert DM (2013) Conservation agriculture systems for Malawian smallholder farmers: long-term effects on crop productivity, profitability and soil quality. Renew Agric Food Syst 28:350–363. doi:10.1017/S1742170512000257

    Article  Google Scholar 

  13. Thierfelder C, Chisui JL, Gama M, Cheesman S, Jere ZD, Bunderson WT, Eash NS, Ngwira A, Rusinamhodzi L (2013) Maize-based conservation agriculture systems in Malawi: long-term trends in productivity. Field Crop Res 142:47–57. doi:10.1016/j.fcr.2012.11.010

    Article  Google Scholar 

  14. Thierfelder C, Mwila M, Rusinamhodzi L (2013) Conservation agriculture in eastern and southern provinces of Zambia: long-term effects on soil quality and maize productivity. Soil Tillage Res 126:246–258. doi:10.1016/j.still.2012.09.002

    Article  Google Scholar 

  15. Thierfelder C, Mutenje M, Mujeyi A, Mupangwa W (2014) Where is the limit? Lessons learned from long-term conservation agriculture research in Zimuto Communal Area, Zimbabwe. Food Secur 7:15–31. doi:10.1007/s12571-014-0404-y

    Article  Google Scholar 

  16. Andersson JA, D’Souza S (2014) From adoption claims to understanding farmers and contexts: a literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agric Ecosyst Environ 187:116–132. doi:10.1016/j.agee.2013.08.008

    Article  Google Scholar 

  17. Giller KE, Andersson JA, Corbeels M, Kirkegaard J, Mortensen D, Erenstein O, Vanlauwe B (2015) Beyond conservation agriculture. Front Plant Sci 6:870. doi:10.3389/fpls.2015.00870

    Article  PubMed  PubMed Central  Google Scholar 

  18. van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  19. Bengtson P, Sterngren AE, Rousk J (2012) Soil bacterial and fungal communities across a pH gradient in an arable soil. Appl Environ Microbiol 78:5906–5911. doi:10.1038/ismej.2010.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U. S. A. 110:6548–6553. doi:10.1073/pnas.1302837110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bisset A, Richardson AE, Baker G, Kirkegaard J, Thrall PH (2013) Bacterial community response to tillage and nutrient additions in a long-term wheat cropping experiment. Soil Biol Biochem 58:281–292. doi:10.1016/j.soilbio.2012.12.002

    Article  Google Scholar 

  22. Navarro-Noya YE, Gómez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suárez-Arriaga MC, Valenzuela-Encinas C, Jiménez-Bueno N, Verhulst N, Govaerts B, Dendooven L (2013) Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem 65:86–95. doi:10.1016/j.soilbio.2013.05.009

    Article  CAS  Google Scholar 

  23. Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis, vol I physical and mineralogical methods. Soil Science Society of America Inc, American Society of Agronomy, Inc, Madison, Wisconsin, USA, pp. 383–411. doi:10.1002/gea.3340050110

    Google Scholar 

  24. Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ (1989) Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci Soc Am. J 53:428–433. doi:10.2136/sssaj1989.03615995005300020019x

    Article  Google Scholar 

  25. Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis: chemical methods part 3. Soil Science Society of America Inc, American Society of Agronomy, Inc, Madison, Wisconsin, USA, pp. 475–490. doi:10.2136/sssabookser5.3.frontmatter

    Google Scholar 

  26. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Agric Chem 46:829–835

    CAS  Google Scholar 

  27. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Off Agric Chem 50:50–55

    CAS  Google Scholar 

  28. Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil-V. A method for measuring soil biomass. Soil Biol Biochem 8:209–213. doi:10.1016/0038-0717(76)90005-5

    Article  CAS  Google Scholar 

  29. Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL (ed) Methods of soil analysis, part 3. Chemical methods. Soil Science Society of America Inc, American Society of Agronomy, Madison USA, pp. 1123–1184

    Google Scholar 

  30. Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L (2010) Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol 76:3685–3691. doi:10.1128/AEM.02726-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, New York

  32. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  33. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 7:668–669. doi:10.1038/nmeth0910-668b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  36. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Human microbiome consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in sanger and 454–pyrosequenced PCR amplicons. Genome Res 21:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McDonald D, Price MN, Goodrich J, Nawrocki EP, De Santis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. doi:10.1038/ismej.2011.139

    Article  CAS  PubMed  Google Scholar 

  39. Lozupone C, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U. S. A. 104:11436–11440. doi:10.1073/pnas.0611525104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. SAS Institute (1989) Statistic guide for personal computers. Version 6.0. (Ed). SAS Institute, Inc, Cary

    Google Scholar 

  41. Panettieri M, Berns AE, Knicker H, Murillo JM, Madejon E (2015) Evaluation of seasonal variability of soil biogeochemical properties in aggregate-size fractioned soil under different tillages. Soil Tillage Res 151:39–49. doi:10.1016/j.still.2015.02.008

    Article  Google Scholar 

  42. Chivenge PP, Murwira HK, Giller KE, Mapfumo P, Six J (2007) Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil Tillage Res 94:328–337. doi:10.1016/j.still.2006.08.006

    Article  Google Scholar 

  43. Simpson JE, Slade E, Riutta T, Taylor ME (2012) Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS One 7:e29616. doi:10.1371/journal.pone.0029616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benbi DK, Khosa MK (2014) Effects of temperature, moisture, and chemical composition of organic substrates on C mineralization in soils. Commun. Soil Sci. Plant Anal. 45:2734–2753. doi:10.1080/00103624.2014.950423

    Article  CAS  Google Scholar 

  45. Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194. doi:10.1038/ismej.2014.210

    Article  PubMed  Google Scholar 

  46. Siles JA, Rachid CTCC, Sampedro I, Garcia-Romera I, Tiedje JM (2014) Microbial diversity of a mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS One 9:e103035. doi:10.1371/journal.pone.0103035

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schnecker J, Wild B, Hofhansl F, Alves RJE, Barta J, Capek P, Fuchslueger L, Gentsch N, Gittel A, Guggenberger G, Hofer A, Kienzl S, Knoltsch A, Lashchinskiy N, Mikutta R, Santruckova H, Shibistova O, Takriti M, Urich T, Weltin G, Richter A (2014) Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated Arctic soils. PLoS One 9:e94076. doi:10.1371/journal.pone.0094076

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pershina E, Valkonen J, Kurki P, Ivanova E, Chirak E, Korvigo I, Provorov N, Andronov E (2015) Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS One 10:e0145072. doi:10.1371/journal.pone.0145072

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mendes LW, Brossi MJD, Kuramae EE, Tsai SM (2015) Land-use system shapes soil bacterial communities in southeastern Amazon Region. Appl Soil Ecol 95:151–160. doi:10.1016/j.apsoil.2015.06.005

    Article  Google Scholar 

  50. Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, Raes J, van Veen JA, Kuramae EE (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448. doi:10.1111/mec.13172

    Article  CAS  PubMed  Google Scholar 

  51. Reith F, Zammit CM, Pohrib R, Gregg AL, Wakelin SA (2015) Geogenic factors as dfrivers of microbial community diversity in soils overlying polymetallic deposits. Appl. Environ. Microbiol. 81:7822–7832. doi:10.1128/AEM.01856-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wood SA, Bradford MA, Gilbert JA, McGuire KL, Palm CA, Tully KL, Zhou JZ, Naeem S (2015) Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. J Appl Ecol 52:744–752. doi:10.1111/1365-2664.12416

    Article  CAS  Google Scholar 

  53. Camilli B, Dell’Abate MT, Mocali S, Fabiani A, Dazzi C (2016) Evolution of organic carbon pools and microbial diversity in hyperarid anthropogenic soils. J Arid Environ 124:318–331. doi:10.1016/j.jaridenv.2015.09.003

    Article  Google Scholar 

  54. Calleja-Cervantes ME, Fernandez-Gonzalez AJ, Irigoyen I, Fernandez-Lopez M, Aparicio-Tejo PM, Menendez S (2015) Thirteen years of continued application of composted organic wastes in a vineyard modify soil quality characteristics. Soil Biol Biochem 90:241–254. doi:10.1016/j.soilbio.2015.07.002

    Article  CAS  Google Scholar 

  55. Parnas H (1975) Model for decomposition of organic material by microorganisms. Soil Biol Biochem 7:161–169. doi:10.1016/0038-0717(75)90014-0

    Article  CAS  Google Scholar 

  56. Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305. doi:10.1097/00010694-197705000-00005

    Article  CAS  Google Scholar 

  57. Abiven S, Recous S, Reyes V (2005) Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biol Fertil Soils 42:119–128. doi:10.1007/s00374-005-0006-0

    Article  CAS  Google Scholar 

  58. España M, Rasche F, Kandeler E, Brune T, Rodriguez B, Bending GD, Cadisch G (2011) Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical vertisol using 15N-DNA stable isotope probing. Pedobiologia 54:187–193. doi:10.1016/j.pedobi.2011.03.001

    Article  Google Scholar 

  59. Cucurachi M, Busconi M, Marudelli M, Soffritti G, Fogher C (2013) Direct amplification of new cellulase genes from woodland soil purified DNA. Mol Biol Rep 40:4317–4325. doi:10.1007/s11033-013-2519-1

    Article  CAS  PubMed  Google Scholar 

  60. Pathma J, Sakthivel N (2013) Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl Soil Ecol 70:33–47. doi:10.1016/j.apsoil.2013.03.011

    Article  Google Scholar 

  61. He YM, Xie KZ, Huang X, Gu WJ, Zhang FB, Tang SH (2013) Evolution of microbial community diversity and enzymatic activity during composting. Res Microbiol 164:189–198. doi:10.1016/j.resmic.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  62. Eichorst SA, Kuske CR (2012) Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol 78:2316–2327. doi:10.1128/AEM.07313-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Book AJ, Lewin GR, McDonald BR, Takasuk TE, Doering DT, Adams AS, Blodgett JAV, Clardy J, Raffa KF, Fox BG, Currie CR (2014) Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol 80:4692–4701. doi:10.1128/AEM.01133-14

    Article  PubMed  PubMed Central  Google Scholar 

  64. An DS, Im WT, Yang HC, Yang DC, Lee ST (2005) Dyella koreensis sp. nov., a B-glucosidase-producing bacterium. Int J Syst Evol Microbiol 55:1625–1628. doi:10.1099/ijs.0.63695-0

    Article  CAS  PubMed  Google Scholar 

  65. Cho MJ, Kim YH, Shin K, Kim YK, Kim YS, Kim TJ (2010) Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: low endo-beta-1,4-glucanase activity. Biochem Biophys Res Commun 395:432–435

    Article  CAS  PubMed  Google Scholar 

  66. Reid NM, Addison SL, Macdonald LJ, Lloyd-Jones G (2014) Biodiversity of active and inactive bacteria in the gut flora of wood-feeding Huhu beetle larvae (Prionoplus reticularis). Appl Environ Microbiol 77:7000–7006. doi:10.1128/AEM.05609-11

    Article  Google Scholar 

  67. Schlaeppi K, Dombrowski N, Garrido Oter R, Ver Loren van Themaat E, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U. S. A. 111:585–592. doi:10.1073/pnas.132

    Article  CAS  PubMed  Google Scholar 

  68. Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. doi:10.1016/j.copbio.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  69. Štursová M, Žifćáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746. doi:10.1111/j.1574-6941.2012.01343.x

    Article  PubMed  Google Scholar 

  70. Benítez MS, Gardener BBM (2009) Linking sequence to function in soil bacteria: sequence-directed isolation of novel bacteria contributing to soil borne plant disease suppression. Appl Environ Microbiol 75:915–924. doi:10.1128/AEM.01296-08

    Article  PubMed  Google Scholar 

  71. Martins LF, Antunes LP, Pascon RC, de Oliveira JCF, Digiampietri LA, Barbosa D, Peixoto BM, Vallim MA, Viana-Niero C, Ostroski EH, Telles GP, Dias Z, da Cruz JB, Juliano L, Verjovski-Almeida S, da Silva AM, Setubal JC (2013) Metagenomic analysis of a tropical composting operation at the São Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS One 8:e61928. doi:10.1371/journal.pone.0061928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Semenov AV, Silva MCPE, Szturc-Koestsier AE, Schmitt H, Salles JF, van Elsas JD (2012) Impact of incorporated fresh 13C potato tissues on the bacterial and fungal community composition of soil. Soil Biol Biochem 49:88–95. doi:10.1016/j.soilbio.2012.02.016

    Article  CAS  Google Scholar 

  73. Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, Wallenstein MD, Brodie EL (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2:94. doi:10.3389/fmicb.2011.00094

    Article  PubMed  PubMed Central  Google Scholar 

  74. Negassa WC, Guber AK, Kravchenko AN, Marsh TL, Hildebrandt B, Rivers ML (2015) Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS One 10:e0123999. doi:10.1371/journal.pone.0123999

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839

    Article  PubMed  Google Scholar 

  76. Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A (2016) The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol Fertil Soils 52:15–29. doi:10.1007/s00374-015-1046-8

    Article  CAS  Google Scholar 

  77. Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794. doi:10.1111/j.1365-2672.2009.04251.x

    Article  CAS  PubMed  Google Scholar 

  78. Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front Microbiol:7. doi:10.3389/fmicb.2016.00211

  79. Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE (2016) Bacterial community succession in pine-wood decomposition. Front Microbiol 7:231. doi:10.3389/fmicb.2016.00231

    PubMed  PubMed Central  Google Scholar 

  80. de Gannes V, Eudoxie G, Hickey WJ (2013) Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour Technol 133:573–580. doi:10.1016/j.biortech.2013.01.138

    Article  PubMed  Google Scholar 

  81. Rousk J, Brookes PC, Baath E (2010) Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem 42:926–934. doi:10.1016/j.soilbio.2010.02.009

    Article  CAS  Google Scholar 

  82. Marschner P, Umar S, Baumann K (2011) The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biol Biochem 43:445–451. doi:10.1016/j.soilbio.2010.11.015

    Article  CAS  Google Scholar 

  83. Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30:401–422. doi:10.1051/agro/2009040

    Article  CAS  Google Scholar 

  84. Ghosh S, Lockwood P, Daniel H, Hulugalle N, King K, Kristiansen P (2011) Changes in vertisol properties as affected by organic amendments application rates. Soil Use Manag 27:195–204. doi:10.1111/j.1475-2743.2011.00333.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), ‘Apoyo Especial para Fortalecimiento de Doctorado PNPC 2013’ and project ‘Infraestructura 205945’ from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACyT, Mexico) and ‘Centro Internacional de Mejoramiento de Maíz y Trigo’ (CIMMYT) via CRP MAIZE. The research forms part of the strategic research for ‘Desarrollo sustentable con el productor’ and is part of ‘Modernización Sustentable de la Agricultura Tradicional’ supported by ‘Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación’ (SAGARPA). M. de la C.-B. and D.A. R.-V. received grant-aided support from CONACyT. The authors thank Abacus (CONACyT) for use of the computer facilities for denoising the DNA sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Dendooven.

Electronic supplementary material

Fig. S1

Soil sampling protocol. (DOCX 85 kb)

Fig. S2

Principal component analysis considering the relative abundance of the different bacterial phyla found in a) CP-M, DS-M, DS-R. (PDF 69 kb)

Fig. S3

Principal coordinate analysis of UNIFRAC distance for a) CP-M, DS-M, DS-R. (PDF 87.9 kb)

Fig. S4

The canonical correlation analysis considering the relative abundance of the different bacterial phyla at day 0 and soil characteristics of a) CP-M, DS-M, DS-R. (PDF 70 kb)

Fig. S5

Dynamics of the most abundant bacterial phyla in the unamended soils over time. (PDF 57 kb)

Fig. S6

The CO2 emitted (mg CO2-C kg-1 dry soil) from soil sampled at the long-term field experiment of the Henderson research station started in 2004. (PDF 66 kb)

Fig. S7

Rarification curves. (PDF 71 kb)

Table S1

(DOCX 80 kb)

Table S2

(DOC 48 kb)

Table S3

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Cruz-Barrón, M., Cruz-Mendoza, A., Navarro–Noya, Y.E. et al. The Bacterial Community Structure and Dynamics of Carbon and Nitrogen when Maize (Zea mays L.) and Its Neutral Detergent Fibre Were Added to Soil from Zimbabwe with Contrasting Management Practices. Microb Ecol 73, 135–152 (2017). https://doi.org/10.1007/s00248-016-0807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0807-8

Keywords

Navigation