Skip to main content

Advertisement

Log in

Endosymbiotic Candidates for Parasitoid Defense in Exotic and Native New Zealand Weevils

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Some insects are infected with maternally inherited bacterial endosymbionts that protect them against pathogens or parasitoids. The weevil Sitona obsoletus (=Sitona lepidus) is invasive in New Zealand, and suspected to contain such defensive symbionts, because it is particularly resistant to a Moroccan strain of the parasitoid Microctonus aethiopoides (which successfully attacks many other weevil species), and shows geographic variation in susceptibility to an Irish strain of the same parasitoid. Using 454 pyrosequencing, we investigated the bacterial community associated with S. obsoletus, two other exotic weevils (Sitona discoideus and Listronotus bonariensis) and two endemic New Zealand weevils (Irenimus aequalis and Steriphus variabilis). We found that S. obsoletus was infected by one strain of Wolbachia and two strains of Rickettsia, none of which were found in any other weevil species examined. Using diagnostic PCR, we found that S. obsoletus in the Northland region, where parasitism is highly variable, were primarily infected with Wolbachia and Rickettsia strain 2, indicating that these two symbionts should be investigated for potential defensive properties. In comparison, S. discoideus lacked any apparent maternally inherited bacterial endosymbionts. In the other weevil species, we found a different strain of Wolbachia and two different strains of Spiroplasma. Two weevil species (St. variabilis and L. bonariensis) were infected with distinct strains of Nardonella, the ancestral endosymbiont of weevils, whereas three weevil species (S. obsoletus, S. discoideus, and I. aequalis) lacked evidence for Nardonella infection. However, I. aequalis was consistently infected with a novel Enterobacteriaceae strain, suggesting that a symbiont replacement may have taken place, similar to that described for other weevil clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oliver KM, Moran NA (2009) Defensive symbionts in aphids and other insects. In: White JF, Torres MS (eds) Defensive mutualism in microbial symbiosis. Taylor & Francis, London, pp 129–147

    Google Scholar 

  2. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322(5902):702. doi:10.1126/science.1162418

    Article  CAS  PubMed  Google Scholar 

  3. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6(12):2753–2763. doi:10.1371/journal.pbio.1000002

    Article  CAS  Google Scholar 

  4. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329(5988):212–215. doi:10.1126/science.1188235

    Article  CAS  PubMed  Google Scholar 

  5. Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15(5):475–479. doi:10.1016/j.cub.2004.12.084

    Article  CAS  PubMed  Google Scholar 

  6. Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310(5755):1781–1781. doi:10.1126/science.1120180

    Article  CAS  PubMed  Google Scholar 

  7. Lukasik P, van Asch M, Guo HF, Ferrari J, Godfray HCJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16(2):214–218. doi:10.1111/ele.12031

    Article  PubMed  Google Scholar 

  8. Kellner RLL (2002) Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera : Staphylinidae). Insect Biochem Mol 32(4):389–395. doi:10.1016/S0965-1748(01)00115-1

    Article  CAS  Google Scholar 

  9. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100(4):1803–1807. doi:10.1073/pnas.0335320100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Xie JL, Vilchez I, Mateos M (2010) Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE 5(8):e12149. doi:10.1371/journal.pone.0012149

    Article  PubMed Central  PubMed  Google Scholar 

  11. Radcliffe EB, Flanders KL (1998) Biological control of alfalfa weevil in North America. Integr Pest Manag Rev 3(4):225–242. doi:10.1023/A:1009611219360

    Article  Google Scholar 

  12. Hsiao T (1996) Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests. Chapman & Hall, London, pp 51–72

    Google Scholar 

  13. Leu S-JC, Li JK-K, Hsiao TH (1989) Characterization of Wolbachia postica, the cause of reproductive incompatibility among alfalfa weevil strains. J Invert Pathol 54(2):248–259. doi:10.1016/0022-2011(89)90035-9

    Article  Google Scholar 

  14. Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102. doi:10.1146/annurev.micro.53.1.71

    Article  CAS  PubMed  Google Scholar 

  15. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751. doi:10.1038/nrmicro1969

    Article  CAS  PubMed  Google Scholar 

  16. Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20(4):853–868. doi:10.1111/j.1365-294X.2010.04980.x

    Article  PubMed  Google Scholar 

  17. Toju H, Tanabe AS, Notsu Y, Sota T, Fukatsu T (2013) Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME J 7(7):1378–1390. doi:10.1038/ismej.2013.27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Merville A, Venner S, Henri H, Vallier A, Menu F, Vavre F, Heddi A, Bel-Venner M-C (2013) Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evol Biol 13(1):28. doi:10.1186/1471-2148-13-28

    Article  PubMed Central  PubMed  Google Scholar 

  19. Vankosky MA, Carcamo HA, Dosdall LM (2011) Identification of potential natural enemies of the pea leaf weevil. Sitona lineatus L. in western Canada. J Appl Entomol 135:293–301. doi:10.1111/j.1439-0418.2010.01542.x

    Article  Google Scholar 

  20. Moorhouse E, Charnley A, Gillespie A (1992) A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Ann Appl Biol 121(2):431–454. doi:10.1111/j.1744-7348.1992.tb03455.x

    Article  Google Scholar 

  21. Murphy S, Briscoe B (1999) The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontrol News Inf 20:35N–46N

    Google Scholar 

  22. Gurr GM, Wratten SD (2000) Biological control: measures of success. Kluwer, Dordrecht, p 429

    Book  Google Scholar 

  23. Phillips CB, Vink CJ, Blanchet A, Hoelmer KA (2008) Hosts are more important than destinations: what genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae) means for foreign exploration for natural enemies. Mol Phylogenet Evol 49(2):467–476. doi:10.1016/j.ympev.2008.08.005

    Article  PubMed  Google Scholar 

  24. Babendreier D, Bigler F, Kuhlmann U (2005) Methods used to assess non-target effects of invertebrate biological control agents of arthropod pests. Biocontrol 50(6):821–870. doi:10.1007/s10526-005-3633-3

    Article  Google Scholar 

  25. Goldson S, Dyson C, Proffitt J, Frampton E, Logan J (1985) The effect of Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) on lucerne yields in New Zealand. B Entomol Res 75(3):429–442. doi:10.1017/S000748530001453X

    Article  Google Scholar 

  26. Stufkens M, Farrell J, Goldson S (1987) Establishment of Microtonus aethiopoides, a parasitoid of the sitona weevil in New Zealand. Proc New Zealand Weed and Pest Control Conference. New Zealand Weed and Pest Control Society Inc., pp. 31–35

  27. Kean JM, Barlow ND (2000) Long-term assessment of the biological control of Sitona discoideus by Microctonus aethiopoides and test of a model. Biocontrol Sci Technol 10(3):215–221. doi:10.1080/09583150050044493

    Article  Google Scholar 

  28. Barratt B, Evans A, Ferguson C, Barker G, McNeill M, Phillips C (1997) Laboratory nontarget host range of the introduced parasitoids Microctonus aethiopoides and M. hyperodae (Hymenoptera: Braconidae) compared with field parasitism in New Zealand. Environ Entomol 26(3):694–702

    Article  Google Scholar 

  29. Barratt B, Evans A, Ferguson C, O’Callaghan M (1997) Potential for biocontrol of Sitona lepidus Gyllenhal by Microctonus spp. Proc New Zealand Plant Protection Conference. New Zealand Plant Protection Society Inc, pp. 37–40

  30. McNeill M, Barratt B, Evans A (2000) Behavioural acceptability of Sitona lepidus (Coleoptera: Curculionidae) to the parasitoid Microctonus aethiopoides (Hymenoptera: Braconidae) using the pathogenic bacterium Serratia marcescens Bizio. Biocontrol Sci Technol 10(3):205–213. doi:10.1080/09583150050044484

    Article  Google Scholar 

  31. Sundaralingam S, Hower A, Kim K (2001) Host selection and reproductive success of French and Moroccan populations of the parasitoid, Microctonus aethiopoides (Hymenoptera: Braconidae). BioControl 46(1):25–41. doi:10.1023/A:1009914907209

    Article  Google Scholar 

  32. Phillips C, Cane R, Mee J, Chapman H, Hoelmer K, Coutinot D (2002) Intraspecific variation in the ability of Microctonus aethiopoides (Hymenoptera: Braconidae) to parasitise Sitona lepidus (Coleoptera: Curculionidae). N Z J Agric 45(4):295–303. doi:10.1080/00288233.2002.9513519

    Article  Google Scholar 

  33. Vink C, Phillips C, Mitchell A, Winder L, Cane R (2003) Genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae). Biol Control 28(2):251–264. doi:10.1016/S1049-9644(03)00103-8

    Article  CAS  Google Scholar 

  34. Goldson SL, McNeill MR, Proffitt JR, Barratt BIP (2005) Host specificity testing and suitability of a European biotype of the braconid parasitoid Microctonus aethiopoides as a biological control agent against Sitona lepidus (Coleoptera : Curculionidae) in New Zealand. Biocontrol Sci Technol 15(8):791–813. doi:10.1080/09583150500136444

    Article  Google Scholar 

  35. Gerard P, Eden T, Hardwick S, Mercer C, Slay M, Wilson D (2007) Initial establishment of the Irish strain of Microctonus aethiopoides in New Zealand. N Z Plant Protect 60:203

    Google Scholar 

  36. Gerard P, Wilson D, Eden T (2010) Clover root weevil biocontrol distribution in the North Island—release tactics and outcomes. Proc N Z Grassl Assoc 72:85–89

    Google Scholar 

  37. Goldson SL, McNeill MR, Gerard PJ, Proffitt JR, Phillips CB, Cane RP, Murray PJ (2004) British-based search for natural enemies of the clover root weevil, Sitona lepidus in Europe. N Z J Zool 31(3):233–240

    Article  Google Scholar 

  38. Bright DE (1994) Revision of the genus Sitona (Coleoptera, Curculionidae) of North America. Ann Entomol Soc Am 87(3):277–306

    Article  Google Scholar 

  39. Goldson SL, Emberson RM (1981) Reproductive morphology of the argentine stem weevil, Hyperodes bonariensis (Coleoptera, Curculionidae). N Z J Zool 8(1):67–77. doi:10.1080/03014223.2004.9518375

    Article  Google Scholar 

  40. Barratt BIP, Kuschel G (1996) Broad-nosed weevils (Curculionidae: Brachycerinae: Entimini) of the Lammermoor and Rock and Pillar Ranges in Otago, with descriptions of four new species of Irenimus. N Z J Zool 23(4):359–374. doi:10.1080/03014223.1996.9518096

    Article  Google Scholar 

  41. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38(4):433–437. doi:10.1111/een.12020

    Article  Google Scholar 

  42. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8(1):125. doi:10.1186/1471-2180-8-125

    Article  PubMed Central  PubMed  Google Scholar 

  43. Medina RF, Nachappa P, Tamborindeguy C (2011) Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory. J Evol Biol 24(4):761–771. doi:10.1111/j.1420-9101.2010.02215.x

    Article  CAS  PubMed  Google Scholar 

  44. Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG (2011) Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 61(4):821–831. doi:10.1007/s00248-010-9793-4

    Article  PubMed  Google Scholar 

  45. Steelman SM, Chowdhary BP, Dowd S, Suchodolski J, Janečka JE (2012) Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet Res 8(1):231. doi:10.1186/1746-6148-8-231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi CY, Maiden MCY, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72(11):7098–7110. doi:10.1128/AEM. 00731-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, Kimura N, Fukatsu T (2010) “Candidatus Curculioniphilus buchneri,” a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol 76(1):275–282. doi:10.1128/AEM. 02154-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42. doi:10.1093/nar/gks1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Jolley KA, Maiden MCJ (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinforma 11(1):595. doi:10.1186/1471-2105-11-595

    Article  Google Scholar 

  50. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  52. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. doi:10.1093/sysbio/syq010

  53. Baldo L, Bordenstein S, Wernegreen JJ, Werren JH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23(2):437–449. doi:10.1093/molbev/msj049

    Article  CAS  PubMed  Google Scholar 

  54. Lefevre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A (2004) Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol 21(6):965–973. doi:10.1093/molbev/msh063

    Article  CAS  PubMed  Google Scholar 

  55. Kuriwada T, Hosokawa T, Kumano N, Shiromoto K, Haraguchi D, Fukatsu T (2010) Biological role of Nardonella endosymbiont in its weevil host. PLoS ONE 5(10):e13101. doi:10.1371/journal.pone.0013101

    Article  PubMed Central  PubMed  Google Scholar 

  56. Bian GW, Xu Y, Lu P, Xie Y, Xi ZY (2010) The endosymbiotic bacterium Wolbachia induces resistance to Dengue virus in Aedes aegypti. PLoS Pathog 6(4):e1000833. doi:10.1371/journal.ppat.1000833

    Article  PubMed Central  PubMed  Google Scholar 

  57. Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc R Soc B Biol Sci 273(1598):2097–2106. doi:10.1098/rspb.2006.3541

    Article  Google Scholar 

  58. White JA (2011) Caught in the act: rapid, symbiont-driven evolution. Bioessays 33(11):823–829. doi:10.1002/bies.201100095

    Article  CAS  PubMed  Google Scholar 

  59. Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou WG, Rousset F, O’Neill SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol 29(2):153–160. doi:10.1016/s0965-1748(98)00119-2

    Article  CAS  Google Scholar 

  60. Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, KatZir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp in Bemisia tabaci (Homoptera : Aleyrodidae). Appl Environ Microbiol 72(5):3646–3652. doi:10.1128/aem. 72.5.3646-3652.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Loan C, Holdaway F (1961) Microctonus aethiops (Nees) auctt. and Perilitus rutilus (Nees)(Hymenoptera: Braconidae), European parasites of Sitona weevils (Coleoptera: Curculionidae). Can Entomol 93(12):1057–1079. doi:10.4039/Ent931057-12

    Article  Google Scholar 

  62. Gerard P, Eden T, Wilson D, Burch G (2008) Distribution of the clover root weevil biocontrol agent in the North Island of New Zealand. N Z Plant Protect 60:24–30

    Google Scholar 

  63. McNeill M, Proffitt J, Gerard P, Goldson S (2006) Collections of Microctonus aethiopoides Loan (Hymenoptera: Braconidae) from Ireland. N Z Plant Protect 59:290

    Google Scholar 

  64. Phillips C, Iline I, Vink C, Winder L, McNeill M (2006) Methods to distinguish between the Microctonus aethiopoides strains that parasitise Sitona lepidus and Sitona discoideus. N Z Plant Protect 59:297

    Google Scholar 

  65. Rouchet R, Vorburger C (2012) Strong specificity in the interaction between parasitoids and symbiont-protected hosts. J Evol Biol 25(11):2369–2375. doi:10.1111/j.1420-9101.2012.02608.x

    Article  PubMed  Google Scholar 

  66. Rouchet R, Vorburger C (2014) Experimental evolution of parasitoid infectivity on symbiont-protected hosts leads to the emergence of genotype specificity. Evolution 68(6):1607–1616. doi:10.1111/evo.12377

    Article  PubMed  Google Scholar 

  67. Hurst GDD, von der Schulenburg JHG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard J, Volkl W, Stouthamer R, Majerus MEN (1999) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8(1):133–139. doi:10.1046/j.1365-2583.1999.810133.x

    Article  CAS  PubMed  Google Scholar 

  68. Regassa LB, Gasparich GE (2006) Spiroplasmas: evolutionary relationships and biodiversity. Front Biosci 11:2983–3002. doi:10.2741/2027

    Article  CAS  PubMed  Google Scholar 

  69. de Vries EJ, Jacobs G, Breeuwer JAJ (2001) Growth and transmission of gut bacteria in the western flower thrips, Frankliniella occidentalis. J Invert Pathol 77(2):129–137. doi:10.1006/jipa.2001.5010

    Article  Google Scholar 

  70. Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453. doi:10.1146/annurev.phyto.41.022103.134521

    Article  CAS  PubMed  Google Scholar 

  71. Barash I, Manulis-Sasson S (2009) Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annu Rev Phytopathol 47:133–152. doi:10.1146/annurev-phyto-080508-081803

    Article  CAS  PubMed  Google Scholar 

  72. Moro CV, Tran FH, Raharimalala FN, Ravelonandro P, Mavingui P (2013) Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol 13(1):70. doi:10.1186/1471-2180-13-70

    Article  CAS  Google Scholar 

  73. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109(22):8618–8622. doi:10.1073/pnas.1200231109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. de Vries EJ, Jacobs G, Sabelis MW, Menken SBJ, Breeuwer JAJ (2004) Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc R Soc B Biol Sci 271(1553):2171–2178. doi:10.1098/rspb.2004.2817

    Article  Google Scholar 

  75. Conord C, Despres L, Vallier A, Balmand S, Miquel C, Zundel S, Lemperiere G, Heddi A (2008) Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Mol Biol Evol 25(5):859–868. doi:10.1093/molbev/msn027

    Article  CAS  PubMed  Google Scholar 

  76. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  77. Nardon P, Grenier A-M (1991) Serial endosymbiosis theory and weevil evolution: the role of symbiosis. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, pp 153–169

    Google Scholar 

  78. Heddi A, Nardon P (2005) Sitophilus oryzae L.: a model for intracellular symbiosis in the Dryophthoridae weevils (Coleoptera). Symbiosis 39(1):1–11

    Google Scholar 

  79. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi:10.1146/annurev.genet.41.110306.130119

    Article  CAS  PubMed  Google Scholar 

  80. de Castro AJV, Alonso-Zarazaga MA, Outerelo R (2007) Systematics of Sitonini (Coleoptera : Curculionidae : Entiminae), with a hypothesis on the evolution of feeding habits. Syst Entomol 32(2):312–331. doi:10.1111/j.1365-3113.2006.00368.x

    Article  Google Scholar 

  81. McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci U S A 106(17):7083–7088. doi:10.1073/pnas.0810618106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Dehnel and A. Maldonado for technical support, and three anonymous reviewers for helpful commentary on earlier versions of the manuscript. This research was funded by the University of Kentucky Department of Entomology, USDA National Institute of Food and Agriculture, Hatch project KY008052, the New Zealand Ministry for Business, Innovation and Employment through contract LINX0304, Ecosystems Bioprotection, and the AgResearch Curiosity Fund (A18906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. White.

Additional information

The nucleotide sequence data reported in this manuscript have been submitted to the DDBJ/EMBL/GenBank databases under accession numbers KJ494864-8, KJ522437-49, and the sequence read archive under project accession number SRP041582; all have been publicly released as of 31 Aug, 2014.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.87 mb)

ESM 2

(NEXUS 128 kb)

ESM 3

(NEXUS 50.2 kb)

ESM 4

(NEXUS 61.8 kb)

ESM 5

(NEXUS 16 kb)

ESM 6

(NEXUS 13.1 kb)

ESM 7

(NEXUS 17 kb)

ESM 8

(NEXUS 14.7 kb)

ESM 9

(NEXUS 13.4 kb)

ESM 10

(NEXUS 57.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, J.A., Richards, N.K., Laugraud, A. et al. Endosymbiotic Candidates for Parasitoid Defense in Exotic and Native New Zealand Weevils. Microb Ecol 70, 274–286 (2015). https://doi.org/10.1007/s00248-014-0561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0561-8

Keywords

Navigation