Skip to main content
Log in

Culturable and Culture-Independent Bacterial Diversity and the Prevalence of Cold-Adapted Enzymes from the Himalayan Mountain Ranges of India and Nepal

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacterial diversity of soil samples collected from different geographical regions of Himalayan mountains was studied through culturable (13 samples) and culture-independent approaches (5 samples based on abundance of diversity indices in each ecological niche). Shannon–Wiener diversity index and total bacterial count ranged from 1.50 ± 0.1 to 2.57 ± 0.15 and 7.8 ± 1.6 × 105 to 30.9 ± 1.7 × 105 cfu ml−1 of soil, respectively. Based on morphology and pigmentation, 406 isolates were selected by culturing in different cultivable media at various strengths and concentrations. All the strains were subjected to amplified ribosomal DNA restriction analysis and the representative isolates from each cluster were chosen for 16S rRNA gene sequence-based identification. Soil habitat in Himalayan foot hills was dominated by the genera Arthrobacter, Exiguobacterium, Bacillus, Cedecea, Erwinia, and Pseudomonas. Five 16S rRNA gene libraries from the selected five samples yielded 268 clones and were grouped into 53 phylotypes covering 25 genera including the genus of Ferribacterium, Rothia, and Wautersiella, which were reported for the first time in Himalayan tracks. Principal coordinates analysis indicates that all the clone libraries were clearly separated and found to be significantly different from each other. Further, extracellular investigation of cold-active enzymes showed activity of cellulase (23.71 %), pectinase (20.24 %), amylase (17.32 %), phytase (13.87 %), protease (12.72 %), and lipase (23.71 %) among the isolates. Four isolates namely Exiguobacterium mexicanum (BSa14), Exiguobacterium sibiricum (BZa11), Micrococcus antarcticus (BSb10), and Bacillus simplex (BZb3) showed multiple enzyme activity for five different types of enzymes. In addition, various genera like Exiguobacterium, Erwinia, Mycetecola, Cedecea, Pantoea, and Trichococcus have also shown novel hydrolytic enzyme activity in the Himalayan foothills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pradhan S, Srinivas TNR, Pindi P, Kishore KH, Begum Z, Singh P, Singh A, Pratibha MS, Yasala A, Reddy GSN, Shivaji S (2010) Bacterial biodiversity from Roopkund Glacier, Himalayan mountain ranges, India. Extremophiles 14(4):377–395. doi:10.1007/s00792-010-0318-3

    Article  CAS  PubMed  Google Scholar 

  2. Shivaji S, Pratibha MS, Sailaja B, Hara Kishore K, Singh AK, Begum Z, Anarasi U, Prabagaran SR, Reddy GS, Srinivas TN (2011) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15(1):1–22. doi:10.1007/s00792-010-0333-4

    Article  CAS  PubMed  Google Scholar 

  3. Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S, Chakrabarti T (2005) Planococcus stackebrandtii sp. nov., isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 55(Pt 1):91–94. doi:10.1099/ijs.0.63290-0

    Article  CAS  PubMed  Google Scholar 

  4. Gangwar P, Alam SI, Singh L (2011) Metabolic characterization of cold active Pseudomonas, Arthrobacter, Bacillus, and Flavobacterium spp. from Western Himalayas. Indian J Microbiol 51(1):70–75. doi:10.1007/s12088-011-0092-7

    Article  PubMed Central  PubMed  Google Scholar 

  5. Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71(11):6986–6997. doi:10.1128/AEM.71.11.6986-6997.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gangwar P, Alam SI, Bansod S, Singh L (2009) Bacterial diversity of soil samples from the western Himalayas, India. Can J Microbiol 55(5):564–577. doi:10.1139/w09-011

    Article  CAS  PubMed  Google Scholar 

  7. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53(1):110–122. doi:10.1007/s00248-006-9144-7

    Article  PubMed  Google Scholar 

  8. Liu Y, Yao T, Jiao N, Kang S, Zeng Y, Huang S (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Lett 265(1):98–105. doi:10.1111/j.1574-6968.2006.00477.x

    Article  CAS  PubMed  Google Scholar 

  9. Xiang SR, Shang TC, Chen Y, Jing ZF, Yao TD (2009) Dominant bacteria and biomass in the Kuytun 51 glacier. Appl Environ Microbiol 75(22):7287–7290. doi:10.1128/Aem.00915-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zhang X, Yao T, An L, Tian L, Xu S (2006) A study on the vertical profile of bacterial DNA structure in the Puruogangri (Tibetan Plateau) ice core using denaturing gradient gel electrophoresis. Ann Glaciol 43(1):160–166. doi:10.3189/172756406781811934

    Article  CAS  Google Scholar 

  11. Liu Y, Yao T, Jiao N, Kang S, Xu B, Zeng Y, Huang S, Liu X (2009) Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13(3):411–423. doi:10.1007/s00792-009-0227-5

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XF, Yao TD, Tian LD, Xu SJ, An LZ (2008) Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb Ecol 55(3):476–488. doi:10.1007/s00248-007-9293-3

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Hou S, Yang G, Wang J (2010) Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiol Res 165(4):336–345. doi:10.1016/j.micres.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Srinivas TN, Singh SM, Pradhan S, Pratibha MS, Kishore KH, Singh AK, Begum Z, Prabagaran SR, Reddy GS, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15(6):673–690. doi:10.1007/s00792-011-0398-8

    Article  CAS  PubMed  Google Scholar 

  15. Shivaji S, Bhadra B, Rao RS, Pradhan S (2008) Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles 12(3):375–381. doi:10.1007/s00792-008-0144-z

    Article  CAS  PubMed  Google Scholar 

  16. Mayilraj S, Kroppenstedt RM, Suresh K, Saini HS (2006) Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56(Pt 8):1971–1975. doi:10.1099/ijs.0.63915-0

    Article  CAS  PubMed  Google Scholar 

  17. Negi YK, Prabha D, Garg SK, Kumar J (2010) Genetic diversity among cold-tolerant fluorescent Pseudomonas isolates from Indian Himalayas and their characterization for biocontrol and plant growth-promoting activities. J Plant Growth Regul 30(2):128–143. doi:10.1007/s00344-010-9175-7

    Article  Google Scholar 

  18. Liu Y, Yao T, Jiao N, Tian L, Hu A, Yu W, Li S (2011) Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier. Extremophiles 15(3):411–421. doi:10.1007/s00792-011-0372-5

    Article  PubMed  Google Scholar 

  19. Baghel VS, Tripathi RD, Ramteke PW, Gopal K, Dwivedi S, Jain RK, Rai UN, Singh SN (2005) Psychrotrophic proteolytic bacteria from cold environment of Gangotri glacier, Western Himalaya, India. Enzym Microb Technol 36(5–6):654–659. doi:10.1016/j.enzmictec.2004.09.005

    Article  CAS  Google Scholar 

  20. Mayilraj S, Suresh K, Kroppenstedt RM, Saini HS (2006) Dietzia kunjamensis sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56(Pt 7):1667–1671. doi:10.1099/ijs.0.64212-0

    Article  CAS  PubMed  Google Scholar 

  21. Singh NK, Raichand R, Kaur I, Kaur C, Pareek S, Mayilraj S (2013) Exiguobacterium himgiriensis sp. nov. a novel member of the genus Exiguobacterium, isolated from the Indian Himalayas. Antonie Van Leeuwenhoek 103(4):789–796. doi:10.1007/s10482-012-9861-5

    Article  CAS  PubMed  Google Scholar 

  22. Singla AK, Mayilraj S, Kudo T, Krishnamurthi S, Prasad GS, Vohra RM (2005) Actinoalloteichus spitiensis sp. nov., a novel actinobacterium isolated from a cold desert of the Indian Himalayas. Int J Syst Evol Microbiol 55(Pt 6):2561–2564. doi:10.1099/ijs.0.63720-0

    Article  CAS  PubMed  Google Scholar 

  23. Kishore KH, Begum Z, Pathan AA, Shivaji S (2010) Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60(Pt 8):1909–1913. doi:10.1099/ijs.0.015271-0

    Article  CAS  PubMed  Google Scholar 

  24. Chaturvedi P, Reddy GS, Shivaji S (2005) Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55(Pt 5):2113–2117. doi:10.1099/ijs.0.63806-0

    Article  CAS  PubMed  Google Scholar 

  25. Reddy GS, Uttam A, Shivaji S (2008) Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int J Syst Evol Microbiol 58(Pt 10):2330–2335. doi:10.1099/ijs.0.65515-0

    Article  CAS  PubMed  Google Scholar 

  26. Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56(Pt 12):2765–2770. doi:10.1099/ijs.0.64508-0

    Article  CAS  PubMed  Google Scholar 

  27. Pindi PK, Kishore KH, Reddy GS, Shivaji S (2009) Description of Leifsonia kafniensis sp. nov. and Leifsonia antarctica sp. nov. Int J Syst Evol Microbiol 59(Pt 6):1348–1352. doi:10.1099/ijs.0.006643-0

    Article  CAS  PubMed  Google Scholar 

  28. Reddy GS, Pradhan S, Manorama R, Shivaji S (2010) Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. Int J Syst Evol Microbiol 60(Pt 4):866–870. doi:10.1099/ijs.0.011775-0

    Article  CAS  PubMed  Google Scholar 

  29. Reddy GS, Prabagaran SR, Shivaji S (2008) Leifsonia pindariensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas, and emended description of the genus Leifsonia. Int J Syst Evol Microbiol 58(Pt 9):2229–2234. doi:10.1099/ijs.0.65715-0

    Article  CAS  PubMed  Google Scholar 

  30. Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol. doi:10.1002/jobm.201200126

    PubMed  Google Scholar 

  31. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208. doi:10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  32. Dunbar J, Ticknor LO, Kuske CR (2000) Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66(7):2943–2950. doi:10.1128/aem.66.7.2943-2950.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65(4):1721–1730

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Cho J-C, Kim S-J (2000) Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl Environ Microbiol 66(3):956–965. doi:10.1128/aem.66.3.956-965.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chang BioScience, 2004. Shannon–Wiener diversity index/Shannon entropy calculator. <http://www.changbioscience.com/genetics/shannon.html>.

  36. Romano RT, Zhang R, Teter S, McGarvey JA (2009) The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour Technol 100:4564–4571. doi:10.1016/j.biortech.2008.12.065

    Article  CAS  PubMed  Google Scholar 

  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  38. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78(3):717–725. doi:10.1128/aem.06516-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–721. doi:10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  41. Tamura K, Peterso K, Peterson N, Stecher G, Masatoshi N, Sudhir K (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 10(28):2731–2739

    Article  Google Scholar 

  42. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57(5):503–507. doi:10.1007/s00284-008-9276-8

    Article  CAS  PubMed  Google Scholar 

  44. Lu M, Fang Y, Li H, Liu H, Wang S (2010) Isolation of a novel cold-adapted amylase-producing bacterium and study of its enzyme production conditions. Ann Microbiol 60(3):557–563. doi:10.1007/s13213-010-0090-8

    Article  CAS  Google Scholar 

  45. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27(6):782–798. doi:10.1016/j.biotechadv.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  46. Yoon SJ, Choi YJ, Min HK, Cho KK, Kim JW, Lee SC, Jung YH (1996) Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzym Microb Technol 18(6):449–454. doi:10.1016/0141-0229(95)00131-X

    Article  CAS  Google Scholar 

  47. Zhou MY, Chen XL, Zhao HL, Dang HY, Luan XW, Zhang XY, He HL, Zhou BC, Zhang YZ (2009) Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microb Ecol 58(3):582–590. doi:10.1007/s00248-009-9506-z

    Article  PubMed  Google Scholar 

  48. Jacob N, Asha Poorna C, Prema P (2008) Purification and partial characterization of polygalacturonase from Streptomyces lydicus. Bioresour Technol 99(14):6697–6701. doi:10.1016/j.biortech.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  49. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144(2):479–485. doi:10.1006/icar.1999.6288

    Article  Google Scholar 

  50. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70(1):202–213. doi:10.1128/aem.70.1.202-213.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. McDougald D, Rice SA, Weichart D, Kjelleberg S (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol Ecol 25(1):1–9. doi:10.1111/j.1574-6941.1998.tb00455.x

    Article  CAS  Google Scholar 

  52. Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66(12):5448–5456. doi:10.1128/aem.66.12.5448-5456.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Antibus D, Leff L, Hall B, Baeseman J, Blackwood C (2012) Cultivable bacteria from ancient algal mats from the McMurdo Dry Valleys, Antarctica. Extremophiles 16(1):105–114. doi:10.1007/s00792-011-0410-3

    Article  CAS  PubMed  Google Scholar 

  54. Lemos LN, Fulthorpe RR, Triplett EW, Roesch LF (2011) Rethinking microbial diversity analysis in the high throughput sequencing era. J Microbiol Methods 86(1):42–51. doi:10.1016/j.mimet.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  55. Michaud L, Cello F, Brilli M, Fani R, Giudice A, Bruni V (2004) Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea, Antarctica). FEMS Microbiol Lett 230(1):63–71. doi:10.1016/s0378-1097(03)00857-7

    Article  CAS  PubMed  Google Scholar 

  56. Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65(9):3982–3989

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Bowman JP, McCammon SA, Rea SM, McMeekin TA (2000) The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183(1):81–88. doi:10.1111/j.1574-6968.2000.tb08937.x

    Article  CAS  PubMed  Google Scholar 

  58. Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, Vanhoutte K, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49(3):296–319. doi:10.1111/j.1365-2427.2004.01186.x

    Article  Google Scholar 

  59. Peeters K, Verleyen E, Hodgson D, Convey P, Ertz D, Vyverman W, Willems A (2012) Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 35(4):543–554. doi:10.1007/s00300-011-1100-4

    Article  Google Scholar 

  60. Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5(1):23–33. doi:10.1007/s007920000169

    Article  CAS  PubMed  Google Scholar 

  61. Smith J, Tow L, Stafford W, Cary C, Cowan D (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51(4):413–421. doi:10.1007/s00248-006-9022-3

    Article  PubMed  Google Scholar 

  62. Aislabie J, Lau A, Dsouza M, Shepherd C, Rhodes P, Turner S (2013) Bacterial composition of soils of the Lake Wellman area, Darwin Mountains, Antarctica. Extremophiles:1-12. doi:10.1007/s00792-013-0560-6

  63. Bajerski F, Wagner D (2013) Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica. FEMS Microbiol Ecol 85(1):128–142. doi:10.1111/1574-6941.12105

    Article  PubMed  Google Scholar 

  64. Chong CW, Pearce DA, Convey P, Yew WC, Tan IKP (2012) Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma 181–182(0):45–55. doi:10.1016/j.geoderma.2012.02.017

    Article  Google Scholar 

  65. Cowan D, Russell N, Mamais A, Sheppard D (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6(5):431–436. doi:10.1007/s00792-002-0276-5

    Article  CAS  PubMed  Google Scholar 

  66. Chong CW, Convey P, Pearce DA, Tan IKP (2012) Assessment of soil bacterial communities on Alexander Island (in the maritime and continental Antarctic transitional zone). Polar Biol 35(3):387–399. doi:10.1007/s00300-011-1084-0

    Article  Google Scholar 

  67. Roesch LFW, Fulthorpe RR, Pereira AB, Pereira CK, Lemos LN, Barbosa AD, Suleiman AKA, Gerber AL, Pereira MG, Loss A, da Costa EM (2012) Soil bacterial community abundance and diversity in ice-free areas of Keller Peninsula, Antarctica. Appl Soil Ecol 61(0):7–15. doi:10.1016/j.apsoil.2012.04.009

    Article  Google Scholar 

  68. Chong CW, Pearce DA, Convey P, Tan GYA, Wong RCS, Tan IKP (2010) High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. Soil Biol Biochem 42(4):601–610. doi:10.1016/j.soilbio.2009.12.009

    Article  CAS  Google Scholar 

  69. Stewart K, Snape I, Siciliano S (2012) Physical, chemical and microbial soil properties of frost boils at Browning Peninsula, Antarctica. Polar Biol 35(3):463–468. doi:10.1007/s00300-011-1076-0

    Article  Google Scholar 

  70. Powell SM, Bowman JP, Ferguson SH, Snape I (2010) The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. Soil Biol Biochem 42(11):2012–2021. doi:10.1016/j.soilbio.2010.07.027

    Article  CAS  Google Scholar 

  71. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9(11):2670–2682. doi:10.1111/j.1462-2920.2007.01379.x

    Article  CAS  PubMed  Google Scholar 

  72. Olivera N, Sequeiros C, Nievas M (2007) Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 11(3):517–526. doi:10.1007/s00792-007-0064-3

    Article  CAS  PubMed  Google Scholar 

  73. Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold deserts of the trans-Himalayas. Microb Ecol 58(2):425–434. doi:10.1007/s00248-009-9511-2

    Article  CAS  PubMed  Google Scholar 

  74. Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009) Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59(4):432–438. doi:10.1007/s00284-009-9456-1

    Article  CAS  PubMed  Google Scholar 

  75. Ruckmani A, Chakrabarti T (2011) Analysis of bacterial community composition of a spring water from the Western Ghats, India using culture dependent and molecular approaches. Curr Microbiol 62(1):7–15. doi:10.1007/s00284-010-9663-9

    Article  CAS  PubMed  Google Scholar 

  76. Dastager SG, Deepa CK, Puneet SC, Nautiyal CS, Pandey A (2009) Isolation and characterization of plant growth-promoting strain Pantoea NII-186. From Western Ghat forest soil, India. Lett Appl Microbiol 49(1):20–25. doi:10.1111/j.1472-765X.2009.02616.x

    Article  CAS  PubMed  Google Scholar 

  77. Zhang S, Hou S, Yang G, Wang J (2010) Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiol Res 165(4):336–345. doi:10.1016/j.micres.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  78. Pradhan S, Srinivas TN, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha MS, Yasala AK, Reddy GS, Shivaji S (2010) Bacterial biodiversity from Roopkund Glacier, Himalayan mountain ranges, India. Extremophiles 14(4):377–395. doi:10.1007/s00792-010-0318-3

    Article  CAS  PubMed  Google Scholar 

  79. Xiang SR, Shang TC, Chen Y, Jing ZF, Yao T (2009) Dominant bacteria and biomass in the Kuytun 51 Glacier. Appl Environ Microbiol 75(22):7287–7290. doi:10.1128/AEM.00915-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Xiang SR, Yao TD, An LZ, Xu BQ, Li Z, Wu GJ, Wang YQ, Ma S, Chen XR (2004) Bacterial diversity in Malan ice core from the Tibetan Plateau. Folia Microbiol 49(3):269–275. doi:10.1007/bf02931042

    Article  CAS  Google Scholar 

  81. Xiang S, Yao T, An L, Xu B, Wang J (2005) 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Appl Environ Microbiol 71(8):4619–4627. doi:10.1128/aem.71.8.4619-4627.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Rohini-Kumar M, Osborne J, Saravanan VS (2013) Comparison of soil bacterial communities of Pinus patula of Nilgiris, Western Ghats with other biogeographically distant pine forest clone libraries. Microb Ecol 66(1):132–144. doi:10.1007/s00248-012-0167-y

    Article  CAS  PubMed  Google Scholar 

  83. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72(3):1719–1728. doi:10.1128/aem.72.3.1719-1728.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Christner B, Kvitko B II, Reeve J (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7(3):177–183. doi:10.1007/s00792-002-0309-0

    CAS  PubMed  Google Scholar 

  85. Nold SC, Kopczynski ED, Ward DM (1996) Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat. Appl Environ Microbiol 62(11):3917–3921

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Santegoeds CM, Nold SC, Ward DM (1996) Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl Environ Microbiol 62(11):3922–3928

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Simbahan J, Kurth E, Schelert J, Dillman A, Moriyama E, Jovanovich S, Blum P (2005) Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl Environ Microbiol 71(12):8836–8845. doi:10.1128/aem.71.12.8836-8845.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Aminin ALN, Warganegara FM, Aditiawati P, Akhmaloka (2008) Simple enrichment and independent cultures to expand bacterial community analysis from Gedongsongo hot spring. J Biosci Bioeng 106(2):211–214. doi:10.1263/jbb.106.211

    Article  CAS  PubMed  Google Scholar 

  89. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1 (4):283-290. doi:http://www.nature.com/ismej/journal/v1/n4/suppinfo/ismej200753s1.html

  90. Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47(2):161–177. doi:10.1016/s0168-6496(03)00257-5

    Article  CAS  PubMed  Google Scholar 

  91. Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11(2):211–216. doi:10.1007/s00792-006-0050-1

    Article  CAS  PubMed  Google Scholar 

  92. Salwan R, Gulati A, Kasana RC (2010) Phylogenetic diversity of alkaline protease-producing psychrotrophic bacteria from glacier and cold environments of Lahaul and Spiti, India. J Basic Microbiol 50(2):150–159. doi:10.1002/jobm.200800400

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Department of Science and Technology, Government of India (GOI) for the grant (vide reference No. SR/FT/LS-032/2008) and support by University Grants Commission (GOI) through the Special Assistance Program (SAP) (vide reference NO. F. 3-9/2007-SAP-II). The authors also acknowledge Dr. Muthu Krishnan, Assistant Professor, Department of Linguistics, Bharathiar University, for proof reading the manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solai Ramatchandirane Prabagaran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1627 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, S., Gowdaman, V. & Prabagaran, S.R. Culturable and Culture-Independent Bacterial Diversity and the Prevalence of Cold-Adapted Enzymes from the Himalayan Mountain Ranges of India and Nepal. Microb Ecol 69, 472–491 (2015). https://doi.org/10.1007/s00248-014-0476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0476-4

Keywords

Navigation