Skip to main content
Log in

Nitrogen-Cycling Genes in Epilithic Biofilms of Oligotrophic High-Altitude Lakes (Central Pyrenees, Spain)

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial biofilms in oligotrophic environments are the most reactive component of the ecosystem. In high-altitude lakes, exposed bedrock, boulders, gravel, and sand in contact with highly oxygenated water and where a very thin epilithic biofilm develops usually dominate the littoral zone. Traditionally, these surfaces have been considered unsuitable for denitrification, but recent investigations have shown higher biological diversity than expected, including diverse anaerobic microorganisms. In this study, we explored the presence of microbial N-cycling nirS and nirK (denitrification through the conversion of NO2 to NO), nifH (N2 fixation), anammox (anaerobic ammonium oxidation), and amoA (aerobic ammonia oxidation, both bacterial and archaeal) genes in epilithic biofilms of a set of high-altitude oligotrophic lakes in the Pyrenees. The concentrations of denitrifying genes determined by quantitative PCR were two orders of magnitude higher than those of ammonia-oxidizing genes. Both types of genes were significantly correlated, suggesting a potential tight coupling nitrification-denitrification in these biofilms that deserves further confirmation. The nifH gene was detected after nested PCR, and no signal was detected for the anammox-specific genes used. The taxonomic composition of denitrifying and nitrogen-fixing genes was further explored by cloning and sequencing. Interestingly, both microbial functional groups were richer and more genetically diverse than expected. The nirK gene, mostly related to Alphaproteobacteria (Bradyrhizobiaceae), dominated the denitrifying gene pool as expected for oxygen-exposed habitats, whereas Deltaproteobacteria (Geobacter like) and Cyanobacteria were the most abundant among nitrogen fixers. Overall, these results suggest an epilithic community more metabolically diverse than previously thought and with the potential to carry out an active role in the biogeochemical nitrogen cycling of high-altitude ecosystems. Measurements of activity rates should be however carried out to substantiate and further explore these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  2. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the Twenty first century. Phil Trans R Soc B: Biol Sci 368

  3. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  4. Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PB, Wolfe AP (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334:1545–1548. doi:10.1126/science.1212267

    Article  CAS  PubMed  Google Scholar 

  5. Camarero L, Rogora M, Mosello R, Anderson NJ, Barbieri A, Botev I, Kernan M, Kopáček J, Korhola A, Lotter AF, Muri G, Postolache C, StuchlÍk E, Thies H, Wright RF (2009) Regionalisation of chemical variability in European mountain lakes. Freshw Biol 54:2452–2469

    Article  CAS  Google Scholar 

  6. Elser JJ, Kyle M, Steuer L, Nydick KR, Baron JS (2009) Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90:3062–3073

    Article  PubMed  Google Scholar 

  7. Houlton BZ, Bai E (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc Natl Acad Sci U S A 106:21713–21716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  CAS  PubMed  Google Scholar 

  9. Kraft B, Strous M, Tegetmeyer HE (2011) Microbial nitrate respiration—genes, enzymes and environmental distribution. J Biotechnol 155:104–117

    Article  CAS  PubMed  Google Scholar 

  10. Jones CM, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641

    Article  PubMed  Google Scholar 

  11. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  12. Elser JJ, Andersen T, Baron JS, Bergström AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009) Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837

    Article  CAS  PubMed  Google Scholar 

  13. McCrackin ML, Elser JJ (2010) Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecology 91:528–539

    Article  PubMed  Google Scholar 

  14. Catalan J, Ballesteros E, Gacia E, Palau A, Camarero L (1993) Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees—a reference for acidified sites. Water Res 27:133–141

    Article  CAS  Google Scholar 

  15. Catalan J, Camarero L, Gacia E, Ballesteros E, Felip M (1994) Nitrogen in the Pyrenean lakes (Spain). Hydrobiologia 274:17–27

    Article  CAS  Google Scholar 

  16. Camarero L, Catalan J (1996) Variability in the chemistry of precipitation in the Pyrenees (northeastern Spain): dominance of storm origin and lack of altitude influence. J Geophys Res D: Atmos 101:29491–29498

    Article  CAS  Google Scholar 

  17. Bartrons M, Camarero L, Catalan J (2010) Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees. Biogeosciences 7:1469–1479

    Article  CAS  Google Scholar 

  18. Catalan J (1992) Evolution of dissolved and particulate matter during the ice-covered period in a deep high-mountain lake. Can J Fish Aquat Sci 49:945–955

    Article  Google Scholar 

  19. Auguet JC, Nomokonova N, Camarero L, Casamayor EO (2011) Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol 77:1937–1945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Auguet JC, Triado-Margarit X, Nomokonova N, Camarero L, Casamayor EO (2012) Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. Isme J 6:1786–1797. doi:10.1038/ismej.2012.33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kernan M, Ventura M, BituŠÍk P, Brancelj A, Clarke G, Velle G, Raddum GG, StuchlÍk E, Catalan J (2009) Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. Freshw Biol 54:2470–2493

    Article  CAS  Google Scholar 

  22. Bartrons M, Catalan J, Casamayor EO (2012) High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. Microb Ecol 64:860–869

    Article  PubMed  Google Scholar 

  23. Camarero L, Catalan J (2012) Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nat Commun 3:1118. doi:10.1038/ncomms2125

    Article  CAS  PubMed  Google Scholar 

  24. Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Throbäck IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  PubMed  Google Scholar 

  26. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364

    Article  CAS  PubMed  Google Scholar 

  27. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoa as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Zehr JP, Turner PJ (2001) Nitrogen fixation: nitrogenase genes and gene expression. Methods Microbiol 30:271–286

    Article  CAS  Google Scholar 

  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  30. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Sickman JO, Melack JM, Clow DW (2003) Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol Oceanogr 48:1885–1892

    Article  CAS  Google Scholar 

  32. Lyautey E, Hallin S, Teissier S, Iribar A, Compin A, Philippot L, Garabetian F (2013) Abundance, activity and structure of denitrifier communities in phototrophic river biofilms (River Garonne, France). Hydrobiologia 716:177–187. doi:10.1007/s10750-013-1561-2

    Article  CAS  Google Scholar 

  33. Peterson CG, Daley AD, Pechauer SM, Kalscheur KN, Sullivan MJ, Kufta SL, Rojas M, Ka G, Kelly JJ (2011) Development of associations between microalgae and denitrifying bacteria in streams of contrasting anthropogenic influence. FEMS Microbiol Ecol 77:477–492. doi:10.1111/j.1574-6941.2011.01131.x

    Article  CAS  PubMed  Google Scholar 

  34. Philippot L, Čuhel J, Saby NPA, Chèneby D, Chroňáková A, Bru D, Arrouays D, Martin-Laurent F, Šimek M (2009) Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environ Microbiol 11:1518–1526

    Article  PubMed  Google Scholar 

  35. Graham DW, Trippett C, Dodds WK, O’Brien JM, Banner EBK, Head IM, Smith MS, Yang RK, Knapp CW (2010) Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environ Pollut 158:3225–3229. doi:10.1016/j.envpol.2010.07.010, Barking, Essex : 1987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Martins G, Terada A, Ribeiro DC, Corral AM, Brito AG, Smets BF, Nogueira R (2011) Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles. FEMS Microbiol Ecol 77:666–679

    Article  CAS  PubMed  Google Scholar 

  37. Abell GCJ, Revill AT, Smith C, Bissett AP, Volkman JK, Robert SS (2010) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. Isme J 4:286–300. doi:10.1038/ismej.2009.105

    Article  CAS  PubMed  Google Scholar 

  38. Knapp CW, Dodds WK, Wilson KC, O’Brien JM, Graham DW (2009) Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ Sci Technol 43:4273–4279

    Article  CAS  PubMed  Google Scholar 

  39. McCrackin ML, Elser JJ (2011) Denitrification kinetics and denitrifier abundances in sediments of lakes receiving atmospheric nitrogen deposition (Colorado, USA). Biogeochemistry: 1–16

  40. Welsh DT, Bartoli M, Nizzoli D, Castaldelli G, Riou SA, Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser 208:65–77

    Article  Google Scholar 

  41. Fulweiler RW, Brown SM, Nixon SW, Jenkins BD (2013) Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Mar Ecol Prog Ser 482:57–68

    Article  CAS  Google Scholar 

  42. Halm H, Musat N, Lam P, Langlois R, Musat F, Peduzzi S, Lavik G, Schubert CJ, Singha B, Laroche J, Kuypers MMM (2009) Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environ Microbiol 11:1945–1958

    Article  CAS  PubMed  Google Scholar 

  43. Flores-Mireles AL, Winans SC, Holguin G (2007) Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots. Appl Environ Microbiol 73:7308–7321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  45. Sirivedhin T, Gray KA (2006) Factors affecting denitrification rates in experimental wetlands: field and laboratory studies. Ecol Eng 26:167–181

    Article  Google Scholar 

  46. Baldwin DS, Mitchell AM, Rees GN, Watson GO, Williams JL (2006) Nitrogen processing by biofilms along a lowland river continuum. River Res Appl 22:319–326

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Centre de Recerca d’Alta Muntanya (CRAM), Universitat de Barcelona, Vielha, for laboratory facilities. X Triadó, L Banyeras, A Calviño, and A Fernández-Guerra are acknowledged for their technical and bioinformatics assistance, and S Merbft and J-C Auguet for qPCR compiled data. We thank two anonymous reviewers for the helpful comments on the manuscript. MVC was benefited by the Program Juan de la Cierva, Spanish Office for Science (MINECO) and currently by Beatriu de Pinós (Generalitat de Catalunya) postdoctoral fellowships. This study was supported by MINECO grants DARKNESS (CGL2012-32747) to EOC and NITROPIR (CGL2010-19373) to JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio O. Casamayor.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vila-Costa, M., Bartrons, M., Catalan, J. et al. Nitrogen-Cycling Genes in Epilithic Biofilms of Oligotrophic High-Altitude Lakes (Central Pyrenees, Spain). Microb Ecol 68, 60–69 (2014). https://doi.org/10.1007/s00248-014-0417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0417-2

Keywords

Navigation