We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

SPECT/CT, PET/CT and PET/MRI: oncologic and infectious applications and protocol considerations

  • Improving Protocols
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Functional imaging is playing an increasingly important role in pediatric radiology. Hybrid imaging techniques utilizing PET/CT (positron emission tomography/computed tomography), PET/MRI (positron emission tomography/magnetic resonance imaging), or SPECT/CT (single photon emission computed tomography/computed tomography) are now available in nearly every clinical practice. There are an increasing number of indications for the use of functional imaging, including oncologic and infectious indications, and it is essential to select and design the hybrid imaging protocol in order to optimize both the functional and anatomic components of the examination. Optimizing the protocol includes strategies for dose reduction, judicious use of contrast media and diagnostic quality imaging as appropriate, and for the greatest reduction in exposure to ionizing radiation, utilizing PET/MRI, whenever available. This review will provide an overview of hybrid imaging protocol considerations with a focus on oncologic and infectious indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fahey FH (2009) Dosimetry of pediatric PET/CT. J Nucl Med 50:1483–1491

    Article  CAS  PubMed  Google Scholar 

  2. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H (2013) MRI for attenuation correction in PET: methods and challenges. MAGMA 26:99–113

    Article  PubMed  Google Scholar 

  3. Fahey FH, Goodkind A, MacDougall RD et al (2017) Operational and dosimetric aspects of pediatric PET/CT. J Nucl Med 58:1360–1366

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parisi MT, Bermo MS, Alessio AM et al (2017) Optimization of pediatric PET/CT. Semin Nucl Med 47:258–274

    Article  PubMed  Google Scholar 

  5. Colleran GC, Kwatra N, Oberg L et al (2017) How we read pediatric PET/CT: indications and strategies for image acquisition, interpretation and reporting. Cancer Imaging 17:28

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gatidis S, Schmidt H, Gucke B et al (2016) Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission tomography/computed tomography. Invest Radiol 51:7–14

    Article  PubMed  Google Scholar 

  7. Schafer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231

    Article  PubMed  Google Scholar 

  8. States LJ, Reid JR (2020) Whole-body PET/MRI applications in pediatric oncology. AJR Am J Roentgenol 215:713–725

    Article  PubMed  Google Scholar 

  9. Umutlu L, Beyer T, Grueneisen JS et al (2019) Whole-body [18F]-FDG-PET/MRI for oncology: a consensus recommendation. Nuklearmedizin 58:68–76

    Article  PubMed  Google Scholar 

  10. Bailey DL, Willowson KP (2014) Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 41:S17–S25

    Article  PubMed  Google Scholar 

  11. Nadel HR (2014) SPECT/CT in pediatric patient management. Eur J Nucl Med Mol Imaging 41:S104–S114

    Article  PubMed  Google Scholar 

  12. Krokhmal AA, Kwatra N, Drubach L et al (2022) (68) Ga-DOTATATE PET and functional imaging in pediatric pheochromocytoma and paraganglioma. Pediatr Blood Cancer 69:e29740

    Article  CAS  PubMed  Google Scholar 

  13. McElroy KM, Binkovitz LA, Trout AT et al (2020) Pediatric applications of Dotatate: early diagnostic and therapeutic experience. Pediatr Radiol 50:882–897

    Article  PubMed  Google Scholar 

  14. Hicks RJ, Jackson P, Kong G et al (2019) (64)Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy. J Nucl Med 60:777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pandit-Taskar N, Zanzonico P, Staton KD et al (2018) Biodistribution and dosimetry of (18)F-Meta-Fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharp SE, Trout AT, Weiss BD, Gelfand MJ (2016) MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics 36:258–278

    Article  PubMed  Google Scholar 

  17. Wagner LM, Kremer N, Gelfand MJ et al (2017) Detection of lymph node metastases in pediatric and adolescent/young adult sarcoma: Sentinel lymph node biopsy versus fludeoxyglucose positron emission tomography imaging-A prospective trial. Cancer 123:155–160

    Article  CAS  PubMed  Google Scholar 

  18. Uslu L, Donig J, Link M et al (2015) Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286

    Article  PubMed  Google Scholar 

  19. States LJ, Voss SD (2019) PET/CT in pediatric oncology. In: Voss SD, McHugh K (eds) Imaging in pediatric oncology. Springer Nature, Switzerland, pp 29–62

    Chapter  Google Scholar 

  20. Marti-Climent JM, Prieto E, Moran V et al (2017) Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI Res 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qi Z, Gates EL, O’Brien MM, Trout AT (2018) Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma. Pediatr Radiol 48:196–203

    Article  PubMed  Google Scholar 

  22. Gatidis S, Schäfer JF (2019) PET/MRI. In: Voss SD, McHugh K (eds) Imaging in pediatric oncology. Springer Nature, Switzerland, pp 63–74

    Chapter  Google Scholar 

  23. Badawi RD, Shi H, Hu P et al (2019) First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 60:299–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alberts I, Hunermund JN, Prenosil G et al (2021) Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging 48:2395–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jh O, YooIe R, Kim SH et al (2007) Clinical significance of small pulmonary nodules with little or no 18F-FDG uptake on PET/CT images of patients with nonthoracic malignancies. J Nucl Med 48:15–21

    Google Scholar 

  26. McCarville MB, Billups C, Wu J et al (2013) The role of PET/CT in assessing pulmonary nodules in children with solid malignancies. AJR Am J Roentgenol 201:W900-905

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burris NS, Johnson KM, Larson PE et al (2016) Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology 278:239–246

    Article  PubMed  Google Scholar 

  28. Chandarana H, Heacock L, Rakheja R et al (2013) Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology 268:874–881

    Article  PubMed  Google Scholar 

  29. Jaimes C, Robson CD, Machado-Rivas F et al (2021) Success of nonsedated neuroradiologic MRI in children 1–7 years old. AJR Am J Roentgenol 216:1370–1377

    Article  PubMed  Google Scholar 

  30. Masselli G, De Angelis C, Sollaku S et al (2020) PET/CT in pediatric oncology. Am J Nucl Med Mol Imaging 10:83–94

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cederberg KB, Iyer RS, Chaturvedi A et al (2022) Imaging of pediatric bone tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatr Blood Cancer e30000

  32. Tsai LL, Drubach L, Fahey F et al (2012) [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neurooncol 108:469–475

    Article  CAS  PubMed  Google Scholar 

  33. Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res 23:e46–e53

    Article  PubMed  Google Scholar 

  34. Jessop S, Crudgington D, London K et al (2020) FDG PET-CT in pediatric Langerhans cell histiocytosis. Pediatr Blood Cancer 67:e28034

    Article  CAS  PubMed  Google Scholar 

  35. Rameh V, Voss S, Bedoya MA et al (2022) The added value of skeletal surveys in the initial evaluation of children diagnosed with Langerhans cell histiocytosis in the era of staging (18) F-FDG PET/CT: A retrospective study. Pediatr Blood Cancer e30057

  36. Schafer JF, Granata C, von Kalle T et al (2020) Whole-body magnetic resonance imaging in pediatric oncology - recommendations by the Oncology Task Force of the ESPR. Pediatr Radiol 50:1162–1174

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pfluger T, Piccardo A (2017) Neuroblastoma: MIBG imaging and new tracers. Semin Nucl Med 47:143–157

    Article  PubMed  Google Scholar 

  38. Sharp SE, Shulkin BL, Gelfand MJ et al (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243

    Article  PubMed  Google Scholar 

  39. Maaz AUR, O’Doherty J, Djekidel M (2021) (68)Ga-DOTATATE PET/CT for neuroblastoma staging: utility for clinical use. J Nucl Med Technol 49:265–268

    Article  PubMed  Google Scholar 

  40. Gains JE, Aldridge MD, Mattoli MV et al (2020) 68Ga-DOTATATE and 123I-mIBG as imaging biomarkers of disease localisation in metastatic neuroblastoma: implications for molecular radiotherapy. Nucl Med Commun 41:1169–1177

    Article  CAS  PubMed  Google Scholar 

  41. Kong G, Hofman MS, Murray WK et al (2016) Initial experience With Gallium-68 DOTA-Octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol 38:87–96

    Article  CAS  PubMed  Google Scholar 

  42. DuBois SG, Chesler L, Groshen S et al (2012) Phase I study of vincristine, irinotecan, and (1)(3)(1)I-metaiodobenzylguanidine for patients with relapsed or refractory neuroblastoma: a new approaches to neuroblastoma therapy trial. Clin Cancer Res 18:2679–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. George SL, Falzone N, Chittenden S et al (2016) Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma. Nucl Med Commun 37:466–472

    Article  PubMed  PubMed Central  Google Scholar 

  44. Polishchuk AL, Dubois SG, Haas-Kogan D et al (2011) Response, survival, and toxicity after iodine-131-metaiodobenzylguanidine therapy for neuroblastoma in preadolescents, adolescents, and adults. Cancer 117:4286–4293

    Article  CAS  PubMed  Google Scholar 

  45. Pijl JP, Kwee TC, Legger GE et al (2020) Role of FDG-PET/CT in children with fever of unknown origin. Eur J Nucl Med Mol Imaging 47:1596–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bagrosky BM, Hayes KL, Koo PJ, Fenton LZ (2013) 18F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection. Pediatr Radiol 43:991–1000

    Article  PubMed  Google Scholar 

  47. Kwee RM, Kwee TC (2020) (18)F-FDG PET for diagnosing infections in prosthetic joints. PET Clin 15:197–205

    Article  PubMed  Google Scholar 

  48. Matsubara K, Ibaraki M, Nemoto M et al (2022) A review on AI in PET imaging. Ann Nucl Med 36:133–143

    Article  PubMed  Google Scholar 

  49. Liu J, Malekzadeh M, Mirian N et al (2021) Artificial intelligence-based image enhancement in PET imaging: noise reduction and resolution enhancement. PET Clin 16:553–576

    Article  PubMed  PubMed Central  Google Scholar 

  50. McMillan AB, Bradshaw TJ (2021) Artificial intelligence-based data corrections for attenuation and scatter in position emission tomography and single-photon emission computed tomography. PET Clin 16:543–552

    Article  PubMed  Google Scholar 

  51. Orlhac F, Nioche C, Klyuzhin I et al (2021) Radiomics in PET imaging: a practical guide for newcomers. PET Clin 16:597–612

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan D. Voss.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, S.D. SPECT/CT, PET/CT and PET/MRI: oncologic and infectious applications and protocol considerations. Pediatr Radiol 53, 1443–1453 (2023). https://doi.org/10.1007/s00247-023-05597-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05597-7

Keywords

Navigation