Skip to main content
Log in

Magnetic resonance imaging in neonates: a practical approach to optimize image quality and increase diagnostic yield

  • Improving Protocols
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging has emerged as a preferred modality in pediatric imaging because of its high soft-tissue contrast and the lack of ionizing radiation. It is important to recognize that despite its many advantages, several challenges to performing neonatal MRI arise from the lack of patient compliance and the small size of the anatomy. This manuscript presents the approach to patient preparation used at the authors’ institution, summarizes general principles of image optimization and hardware selection, and reviews common indications across various organ systems. This manuscript also incorporates input from our pediatric-trained MRI technologists, in an attempt to compile a practical guideline covering all major aspects of neonatal MRI, from its execution to its interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cravero JP, Beach ML, Blike GT et al (2009) The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg 108:795–804

    Article  CAS  PubMed  Google Scholar 

  2. Davidson AJ, Disma N, de Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250

    Article  PubMed  Google Scholar 

  3. McCann ME, de Graaff JC, Dorris L et al (2019) Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet 393:664–677

    Article  PubMed  PubMed Central  Google Scholar 

  4. Windram J, Grosse-Wortmann L, Shariat M et al (2012) Cardiovascular MRI without sedation or general anesthesia using a feed-and-sleep technique in neonates and infants. Pediatr Radiol 42:183–187

    Article  PubMed  Google Scholar 

  5. Antonov NK, Ruzal-Shapiro CB, Morel KD et al (2017) Feed and wrap MRI technique in infants. Clin Pediatr 56:1095–1103

    Article  Google Scholar 

  6. Dillman JR, Tkach JA (2022) Neonatal body magnetic resonance imaging: preparation, performance and optimization. Pediatr Radiol 52:676–684

    Article  PubMed  Google Scholar 

  7. Sun LS, Li G, Miller TL et al (2016) Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA 315:2312–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bedoya MA, White AM, Edgar JC et al (2017) Effect of intravenous administration of contrast media on serum creatinine levels in neonates. Radiology 284:530–540

    Article  PubMed  Google Scholar 

  9. Penfield JG (2008) Nephrogenic systemic fibrosis and the use of gadolinium-based contrast agents. Pediatr Nephrol 23:2121–2129

    Article  PubMed  Google Scholar 

  10. Nardone B, Saddleton E, Laumann AE et al (2014) Pediatric nephrogenic systemic fibrosis is rarely reported: a RADAR report. Pediatr Radiol 44:173–180

    Article  PubMed  Google Scholar 

  11. Mathur AM, Neil JJ, McKinstry RC, Inder TE (2008) Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol 38:260–264

    Article  PubMed  Google Scholar 

  12. Rona Z, Klebermass K, Cardona F et al (2010) Comparison of neonatal MRI examinations with and without an MR-compatible incubator: advantages in examination feasibility and clinical decision-making. Eur J Paediatr Neurol 14:410–417

    Article  CAS  PubMed  Google Scholar 

  13. Jaimes C, Delgado J, Cunnane MB et al (2019) Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol 49:37–45

    Article  PubMed  Google Scholar 

  14. Malik SJ, Beqiri A, Price AN et al (2015) Specific absorption rate in neonates undergoing magnetic resonance procedures at 1.5 T and 3 T. NMR Biomed 28:344–352

    Article  PubMed  PubMed Central  Google Scholar 

  15. Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604–618

    Article  CAS  PubMed  Google Scholar 

  16. Ditchfield M (2008) 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 68:309–319

    Article  PubMed  Google Scholar 

  17. Hillenbrand CM, Reykowski A (2012) MR imaging of the newborn: a technical perspective. Magn Reson Imaging Clin N Am 20:63–79

    Article  PubMed  Google Scholar 

  18. Zhang T, Grafendorfer T, Cheng JY et al (2016) A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. Magn Reson Med 76:1015–1021

    Article  PubMed  Google Scholar 

  19. Winkler SA, Corea J, Lechene B et al (2019) Evaluation of a flexible 12-channel screen-printed pediatric MRI coil. Radiology 291:180–185

    Article  PubMed  Google Scholar 

  20. Jaimes C, Kirsch JE, Gee MS (2018) Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 48:1197–1208

    Article  PubMed  Google Scholar 

  21. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  CAS  PubMed  Google Scholar 

  22. Delfaut EM, Beltran J, Johnson G et al (1999) Fat suppression in MR imaging: techniques and pitfalls. Radiographics 19:373–382

    Article  CAS  PubMed  Google Scholar 

  23. Gwal K, Bedoya MA, Patel N et al (2015) Reference values of MRI measurements of the common bile duct and pancreatic duct in children. Pediatr Radiol 45:1153–1159

    Article  PubMed  Google Scholar 

  24. Kozak BM, Jaimes C, Kirsch J, Gee MS (2020) MRI techniques to decrease imaging times in children. Radiographics 40:485–502

    Article  PubMed  Google Scholar 

  25. Balza R, Jaimes C, Risacher S et al (2019) Impact of a fast free-breathing 3-T abdominal MRI protocol on improving scan time and image quality for pediatric patients with tuberous sclerosis complex. Pediatr Radiol 49:1788–1797

    Article  PubMed  Google Scholar 

  26. Chandarana H, Feng L, Block TK et al (2013) Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Invest Radiol 48:10–16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jaramillo D, Laor T (2008) Pediatric musculoskeletal MRI: basic principles to optimize success. Pediatr Radiol 38:379–391

    Article  PubMed  Google Scholar 

  28. Barnewolt CE, Shapiro F, Jaramillo D (1997) Normal gadolinium-enhanced MR images of the developing appendicular skeleton: part I. Cartilaginous epiphysis and physis. AJR Am J Roentgenol 169:183–189

    Article  CAS  PubMed  Google Scholar 

  29. Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38

    Article  PubMed  Google Scholar 

  30. Boavida P, Muller LS, Rosendahl K (2013) Magnetic resonance imaging of the immature skeleton. Acta Radiol 54:1007–1014

    Article  PubMed  Google Scholar 

  31. Gould SW, Grissom LE, Niedzielski A et al (2012) Protocol for MRI of the hips after spica cast placement. J Pediatr Orthop 32:504–509

    Article  PubMed  Google Scholar 

  32. Nguyen JC, Back SJ, Barrera CA et al (2021) Developmental dysplasia of the hip: can contrast-enhanced MRI predict the development of avascular necrosis following surgery? Skeletal Radiol 50:389–397

    Article  PubMed  Google Scholar 

  33. Benali S, Johnston PR, Gholipour A et al (2018) Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients. Skeletal Radiol 47:821–831

    Article  PubMed  Google Scholar 

  34. Yazbek S, Prabhu SP, Connaughton P et al (2015) Comparison of accelerated 3-D spiral chemical shift imaging and single-voxel spectroscopy at 3T in the pediatric age group. Pediatr Radiol 45:1417–1422

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Office of Faculty Development at Boston Children’s Hospital (C.J.), an American Roentgen Ray Society Scholarship (C.J.), the Rosamund Stone Zander Center for Translational Neuroimaging at Boston Children’s Hospital (C.J.) and the Young Investigator Award from the Society for Pediatric Radiology (M.A.B., C.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Jaimes.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, A., Xu, L., Machado-Rivas, F. et al. Magnetic resonance imaging in neonates: a practical approach to optimize image quality and increase diagnostic yield. Pediatr Radiol 53, 1300–1313 (2023). https://doi.org/10.1007/s00247-022-05550-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05550-0

Keywords

Navigation