Skip to main content

Advertisement

Log in

Computed tomography of the airways and lungs in congenital heart disease

  • Minisymposium: Pediatric cardiovascular CT
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The presence of airway and lung disease in children with congenital heart disease is commonly observed with both cardiac CT angiography and routine chest CT. In this review we discuss abnormalities encountered on CT imaging of the chest beyond the heart and central vasculature, focusing on the airways, lung parenchyma and peripheral vasculature. Preoperative and postoperative findings are reviewed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malik A, Hellinger JC, Servaes S et al (2017) Prevalence of non-cardiovascular findings on CT angiography in children with congenital heart disease. Pediatr Radiol 47:267–279

    Article  PubMed  Google Scholar 

  2. Biko DM, Dori Y, Savoca M et al (2020) Pediatric pulmonary lymphatic flow disorders: diagnosis and management. Paediatr Respir Rev 36:2–7

    PubMed  Google Scholar 

  3. Chang PT, Frost J, Stanescu AL et al (2016) Pediatric thoracic organ transplantation. Current indications, techniques, and imaging findings. Radiol Clin N Am 54:321–338

    Article  PubMed  Google Scholar 

  4. Choi S, Lawlor C, Rahbar R, Jennings R (2019) Diagnosis, classification, and management of pediatric tracheobronchomalacia: a review. JAMA Otolaryngol Head Neck Surg 145:265–275

    Article  PubMed  Google Scholar 

  5. Wang CC, Chen SJ, Wu ET et al (2013) Lower airway anomalies in children with CATCH 22 syndrome and congenital heart disease. Pediatr Pulmonol 48:587–591

    Article  PubMed  CAS  Google Scholar 

  6. Chen Q, Langton-Hewer S, Marriage S et al (2009) Influence of tracheobronchomalacia on outcome of surgery in children with congenital heart disease and its management. Ann Thorac Surg 88:1970–1974

    Article  PubMed  Google Scholar 

  7. Greenberg SB (2012) Dynamic pulmonary CT of children. AJR Am J Roentgenol 199:435

    Article  PubMed  Google Scholar 

  8. Greenberg SB, Dyamenahalli U (2014) Dynamic pulmonary computed tomography angiography: a new standard for evaluation of combined airway and vascular abnormalities in infants. Int J Cardiovasc Imaging 30:407–414

    Article  PubMed  Google Scholar 

  9. Lee EY, Boiselle PM (2009) Tracheobronchomalacia in infants and children: multidetector CT evaluation. Radiology 252:7–22

    Article  PubMed  Google Scholar 

  10. Andronikou S, Chopra M, Langton-Hewer S et al (2019) Technique, pitfalls, quality, radiation dose and findings of dynamic 4-dimensional computed tomography for airway imaging in infants and children. Pediatr Radiol 49:678–686

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fawcett SL, Gomez AC, Hughes JA, Set P (2010) Anatomical variation in the position of the brachiocephalic trunk (innominate artery) with respect to the trachea: a computed tomography-based study and literature review of innominate artery compression syndrome. Clin Anat 23:61–69

    PubMed  CAS  Google Scholar 

  12. Lee EY, Zurakowski D, Waltz DA et al (2008) MDCT evaluation of the prevalence of tracheomalacia in children with mediastinal aortic vascular anomalies. J Thorac Imaging 23:258–265

    Article  PubMed  Google Scholar 

  13. Backer CL, Mongé MC, Popescu AR et al (2016) Vascular rings. Semin Pediatr Surg 25:165–175

    Article  PubMed  Google Scholar 

  14. Gruszka A, Sachweh JS, Schnoering H et al (2017) Aortopexy offers surgical options for a variety of pathological tracheal conditions in paediatric patients. Interact Cardiovasc Thorac Surg 25:589–594

    Article  PubMed  Google Scholar 

  15. Ragalie WS, Mitchell ME (2016) Advances in surgical treatment of congenital airway disease. Semin Thorac Cardiovasc Surg 28:62–68

    Article  PubMed  Google Scholar 

  16. Li D, Feng Y, Hirata Y, An Q (2017) Sling pulmonary artery with bridging bronchus and narrowing airway: a case report. Ann Thorac Cardiovasc Surg 23:265–267

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang SC, Wu ET, Wang CC et al (2012) Surgical management of pulmonary artery sling: trachea diameter and outcomes with or without tracheoplasty. Pediatr Pulmonol 47:903–908

    Article  PubMed  Google Scholar 

  18. An HS, Choi EY, Kwon BS et al (2013) Airway compression in children with congenital heart disease evaluated using computed tomography. Ann Thorac Surg 96:2192–2197

    Article  PubMed  Google Scholar 

  19. Emple T, Calder A, Owens CM, Padley S (2017) Current and future approaches to large airways imaging in adults and children. Clin Radiol 72:356–374

    Article  Google Scholar 

  20. Dori Y, Keller MS, Rome JJ et al (2016) Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease. Circulation 133:1160–1170

    Article  PubMed  Google Scholar 

  21. Goo HW, Jhang WK, Kim YH et al (2008) CT findings of plastic bronchitis in children after a Fontan operation. Pediatr Radiol 38:989–993

    Article  PubMed  Google Scholar 

  22. Reiterer F, Grossauer K, Morris N et al (2014) Congenital pulmonary lymphangiectasis. Paediatr Respir Rev 15:275–280

    PubMed  Google Scholar 

  23. Saul D, Degenhardt K, Iyoob SD et al (2016) Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator? Pediatr Radiol 46:483–489

    Article  PubMed  Google Scholar 

  24. Lam CZ, Bhamare TA, Gazzaz T et al (2017) Diagnosis of secondary pulmonary lymphangiectasia in congenital heart disease: a novel role for chest ultrasound and prognostic implications. Pediatr Radiol 47:1441–1451

    Article  PubMed  Google Scholar 

  25. Biko DM, Reisen B, Otero HJ et al (2019) Imaging of central lymphatic abnormalities in Noonan syndrome. Pediatr Radiol 49:586–592

    Article  PubMed  Google Scholar 

  26. Malone LJ, Fenton LZ, Weinman JP et al (2015) Pediatric lymphangiectasia: an imaging spectrum. Pediatr Radiol 45:562–569

    Article  PubMed  Google Scholar 

  27. Barrera CA, Johnson AM, Rychik J et al (2021) Prognostic value of the nutmeg lung pattern/lymphangiectasia on fetal magnetic resonance imaging. Pediatr Radiol. https://doi.org/10.1007/s00247-021-05061-4

  28. Sun X, Shen W, Xia S et al (2017) Diffuse pulmonary lymphangiomatosis: MDCT findings after direct lymphangiography. AJR Am J Roentgenol 208:300–305

    Article  PubMed  Google Scholar 

  29. Barrera CA, Victoria T, Escobar FA et al (2020) Imaging of fetal lymphangiectasias: prenatal and postnatal imaging findings. Pediatr Radiol 50:1872–1880

    Article  PubMed  Google Scholar 

  30. Schallert EK, Danton GH, Kardon R, Young DA (2013) Describing congenital heart disease by using three-part segmental notation. Radiographics 33:E33–E46

    Article  PubMed  Google Scholar 

  31. Ugas Charcape CF, Alpaca Rodriguez LR, Matos Rojas IA et al (2019) Characterisation of computed tomography angiography findings in paediatric patients with heterotaxy. Pediatr Radiol 49:1142–11510

    Article  PubMed  Google Scholar 

  32. Lapierre C, Déry J, Guérin R et al (2010) Segmental approach to imaging of congenital heart disease. Radiographics 30:397–411

    Article  PubMed  Google Scholar 

  33. Freedom RM, Yoo SJ, Goo HW et al (2006) The bronchopulmonary foregut malformation complex. Cardiol Young 16:229–251

    Article  PubMed  Google Scholar 

  34. Jeewa A, Culham JAG, Human DG (2010) A case of horseshoe lung and complex congenital heart disease in a term newborn. Pediatr Radiol 40:206–209

    Article  PubMed  Google Scholar 

  35. Ahuja N, Mack WJ, Wu S et al (2021) Acute respiratory infections in hospitalised infants with congenital heart disease. Cardiol Young 31:547–555

    Article  PubMed  Google Scholar 

  36. Murni IK, MacLaren G, Morrow D et al (2017) Perioperative infections in congenital heart disease. Cardiol Young 27:S14–S21

    Article  PubMed  Google Scholar 

  37. Hoffman JIE (2013) Normal and abnormal pulmonary arteriovenous shunting: occurrence and mechanisms. Cardiol Young 23:629–641

    Article  PubMed  Google Scholar 

  38. Khanna G, Bhalla S, Krishnamurthy R, Canter C (2012) Extracardiac complications of the Fontan circuit. Pediatr Radiol 42:233–241

    Article  PubMed  Google Scholar 

  39. Choi YH, Lee W, Cheon JE et al (2009) CT findings in unilateral hepatopulmonary syndrome after the Fontan operation. Pediatr Radiol 39:336–342

    Article  PubMed  Google Scholar 

  40. Adams HP, Erasmus J, Crockett R et al (1996) The hepatopulmonary syndrome: radiologic findings in 10 patients. AJR Am J Roentgenol 166:1379–1385

    Article  Google Scholar 

  41. Meyer CA, White CS, Sherman KE (2000) Diseases of the hepatopulmonary axis. Radiographics 20:687–698

    Article  PubMed  CAS  Google Scholar 

  42. Cartin-Ceba R, Swanson KL, Krowka MJ (2013) Pulmonary arteriovenous malformations. Chest 144:1033–1044

    Article  PubMed  Google Scholar 

  43. Riggs KW, Chapman JL, Schecter M et al (2020) Pediatric heart-lung transplantation: a contemporary analysis of outcomes. Pediatr Transplant 24:1–8

    Article  Google Scholar 

  44. Voeller RK, Epstein DJ, Guthrie TJ et al (2012) Trends in the indications and survival in pediatric heart transplants: a 24-year single-center experience in 307 patients. Ann Thorac Surg 94:807–816

    Article  PubMed  Google Scholar 

  45. Schowengerdt KO, Naftel DC, Seib PM et al (1997) Infection after pediatric heart transplantation: results of a multiinstitutional study. The Pediatric Heart Transplant Study Group. J Heart Lung Transplant 16:1207–1216

  46. Manlhiot C, Pollock-BarZiv SM, Holmes C et al (2010) Post-transplant lymphoproliferative disorder in pediatric heart transplant recipients. J Heart Lung Transplant 29:648–657

    Article  PubMed  Google Scholar 

  47. Semple TR, Ashworth MT, Owens CM (2017) Interstitial lung disease in children made easier…well, almost. Radiographics 37:1679–1703

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan B. Rapp.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online Supplementary Material 1 A 3-month-old girl with double aortic arch, narrowed trachea on neck radiograph. a Electrocardiogram-gated CT angiography of the chest in axial plane demonstrates a double aortic arch, with a smaller left arch and moderate narrowing of the trachea at the level of the arch. b Dynamic airway CT performed simultaneously demonstrates both fixed and dynamic collapse of the trachea at the region of the arch in axial plane. c Coronal oblique 3-D reformat confirms fixed and dynamic collapse of the mid trachea.

Online Supplementary Material 1 A 3-monthold girl with double aortic arch, narrowed trachea on neck radiograph. a Electrocardiogram-gated CT angiography of the chest in axial plane demonstrates a double aortic arch, with a smaller left arch and moderate narrowing of the trachea at the level of the arch. b Dynamic airway CT performed simultaneously demonstrates both fixed and dynamic collapse of the trachea at the region of the arch in axial plane. c Coronal oblique 3-D reformat confirms fixed and dynamic collapse of the mid trachea

(MP4 1,038 kb)

Online Supplementary Material 1

(MP4 2,683 kb)

Online Supplementary Material 1

(MP4 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapp, J.B., White, A.M., Otero, H.J. et al. Computed tomography of the airways and lungs in congenital heart disease. Pediatr Radiol 52, 2529–2537 (2022). https://doi.org/10.1007/s00247-021-05186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05186-6

Keywords

Navigation