Skip to main content

Advertisement

Log in

Intracranial calcifications in childhood: Part 2

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns–Sayre; and Cockayne syndromes), interferonopathies (Aicardi–Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Baba Y, Broderick DF, Uitti RJ et al (2005) Heredofamilial brain calcinosis syndrome. Mayo Clin Proc 80:641–651

    Article  CAS  PubMed  Google Scholar 

  2. Coomans C, Sieben A, Lammens M et al (2018) Early-onset dementia, leukoencephalopathy and brain calcifications: a clinical, imaging and pathological comparison of ALSP and PLOSL/Nasu Hakola disease. Acta Neurol Belg 118:607–615

    Article  CAS  PubMed  Google Scholar 

  3. Livingston JH, Stivaros S, Warren D, Crow YJ (2014) Intracranial calcification in childhood: a review of aetiologies and recognizable phenotypes. Dev Med Child Neurol 56:612–626

    Article  PubMed  Google Scholar 

  4. Pahuja L, Patras E, Sureshbabu S et al (2017) Labrune syndrome: a unique leukoencephalopathy. Ann Indian Acad Neurol 20:59–61

    Article  PubMed  PubMed Central  Google Scholar 

  5. Labrune P, Lacroix C, Goutières F et al (1996) Extensive brain calcifications, leukodystrophy and formation of parenchymal cysts: a new progressive disorder due to diffuse cerebral microangiopathy. Neurology 46:1297–1301

    Article  CAS  PubMed  Google Scholar 

  6. Polvi A, Linnankivi T, Kivelä T et al (2012) Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 90:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simon AJ, Lev A, Zhang Y et al (2016) Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J Exp Med 213:1429–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Knaap MS, Smit LME, Barkhof F et al (2006) Neonatal porencephaly and adult stroke related to mutations in collagen IV A1. Ann Neurol 59:504–511

    Article  CAS  PubMed  Google Scholar 

  9. Verbeek E, Meuwissen MEC, Verheijen FW et al (2012) COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 20:844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Revesz T, Fletcher S, al-Gazali LI, DeBuse P (1992) Bilateral retinopathy, aplastic anaemia and central nervous system abnormalities: a new syndrome? J Med Genet 29:673–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gowda VK, Vegda H, Benakappa N, Benakappa A (2018) Dihydropteridine reductase deficiency: a treatable neurotransmitter movement disorder masquerading as a refactory epilepsy due to novel mutation. Indian J Pediatr 85:812–813

    Article  PubMed  Google Scholar 

  12. Tesson C, Nawara M, Salih MAM et al (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic parapledia. Am J Hum Genet 91:1051–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barkhof F, Verrips A, Wesseling P et al (2000) Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology 217:869–876

    Article  CAS  PubMed  Google Scholar 

  14. Tumminelli G, Di Donato I, Guida V et al (2016) Oculodentodigital dysplasia with massive brain calcification and a new mutation of GJA1 gene. J Alzheimers Dis 49:27–30

    Article  CAS  PubMed  Google Scholar 

  15. Loddenkemper T, Grote K, Evers S et al (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol 249:584–595

    Article  PubMed  Google Scholar 

  16. Hassed S, Li S, Mulvihill J et al (2017) Adams-Oliver syndrome review of the literature: refining the diagnostic phenotype. Am J Med Genet A 173:790–800

    Article  CAS  PubMed  Google Scholar 

  17. Al-Mane K, Al-Dayel F, McDonald P (1998) Intracranial calcification in Raine syndrome: radiological pathological correlation. Pediatr Radiol 28:820–823

    Article  CAS  PubMed  Google Scholar 

  18. AlBarrak ZM, Alqarni AS, Chalisserry EP, Anil S (2016) Papillon-Lefèvre syndrome: a series of five cases among siblings. J Med Case Rep 10:260

    Article  Google Scholar 

  19. Utsumi T, Okada S, Izawa K et al (2017) A case with spondyloenchondrodysplasia treated with growth hormone. Front Endocrinol 8:157

    Article  Google Scholar 

  20. Zaki MS, Selim L, El-Bassyouni HT et al (2016) Molybdenum cofactor and isolated sulphite oxidase deficiencies: clinical and molecular spectrum among Egyptian patients. Eur J Paediatr Neurol 20:714–722

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bosley TM, Alorainy IA, Oystreck DT et al (2014) Neurologic injury in isolated sulfite oxidase deficiency. Can J Neurol Sci 41:42–48

    Article  PubMed  Google Scholar 

  22. Baishya J, Kesav P, Nampoothiri S et al (2018) Extensive extrapulvinar calcification in Fabry disease. Ann Indian Acad Neurol 21:309–310

    PubMed  PubMed Central  Google Scholar 

  23. Moore DF, Ye F, Schiffmann R, Butman JA (2003) Increased signal intensity in the pulvinar on T1-weighted images: a pathognomonic MR imaging sign of Fabry disease. AJNR Am J Neuroradiol 24:1096–1101

    PubMed  PubMed Central  Google Scholar 

  24. Lea ME, Harbord M, Sage MR (1995) Bilateral occipital calcification associated with celiac disease, folate deficiency and epilepsy. AJNR Am J Neuroradiol 16:1498–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajab A, Aldinger KA, El-Shirbini HA et al (2009) Recessive developmental delay, small stature, microcephaly and brain calcifications with locus on chromosome 2. Am J Med Genet A 149A:129–137

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nicolas G, Sanchez-Contreras M, Ramos EM et al (2017) Brain calcifications and PCDH12 variants. Neurol Genet 3:e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cumming WA, Ohlsson A (1985) Intracranial calcification in children with osteopetrosis caused by carbonic anhydrase II deficiency. Radiology 157:325–327

    Article  CAS  PubMed  Google Scholar 

  28. Bosley TM, Salih MA, Alorainy IA et al (2011) The neurology of carbonic anhydrase Type II deficiency syndrome. Brain 134:3502–3515

    Article  PubMed  Google Scholar 

  29. Guo L, Bertola DR, Takanohashi A et al (2019) Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-Pyle disease spectrum and degenerative encephalopathy with brain malformation. Am J Hum Genet 104:925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawashima H, Kawano M, Masaki A, Sato T (1988) Three cases of untreated classical PKU: a report on cataracts and brain calcification. Am J Med Genet 29:89–93

    Article  CAS  PubMed  Google Scholar 

  31. Bosemani T, Felling RJ, Wyse E et al (2014) Neuroimaging findings in children with Keutel syndrome. Pediatr Radiol 44:73–78

    Article  PubMed  Google Scholar 

  32. Battisti C, Dotti MT, Cerase A et al (2002) The Primrose syndrome with progressive neurological involvement and cerebral calcification. J Neurol 249:1466–1468

    Article  PubMed  Google Scholar 

  33. Cleaver R, Berg J, Craft E et al (2019) Refining the Primrose syndrome phenotype: a study of five patients with ZBTB20 de novo variants and a review of the literature. Am J Med Genet A 179:344–349

    Article  PubMed  Google Scholar 

  34. Han C, Alkhater R, Froukh T et al (2016) Epileptic encephalopathy caused by mutations in the guanine nucleotide exchange factor DENND5A. Am J Hum Genet 99:1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schulz PE, Weiner SP, Belmont JW, Fishman MA (1988) Basal ganglia calcifications in a case of biotinidase deficiency. Neurology 38:1326–1328

    Article  CAS  PubMed  Google Scholar 

  36. Ahmad I, Mukhtar G, Iqbal J, Ali SW (2015) Hereditary folate malabsorption with extensive intracranial calcification. Indian Pediatr 52:67–68

    Article  PubMed  Google Scholar 

  37. Rock MJ, Prenen J, Funari VA et al (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Griffith AJ, Sprunger LK, Sirko-Osadsa DA et al (1998) Marshall syndrome associated with a splicing defect at the COL11A1 locus. Am J Hum Genet 62:816–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McDermott A, Jesus AA, Liu Y et al (2013) A case of proteasome-associated auto-inflammatory syndrome with compound heterozygous mutations. J Am Acad Dermatol 69:e29–e32

    Article  PubMed  PubMed Central  Google Scholar 

  40. Black JO (2016) Xeroderma pigmentosum. Head Neck Pathol 10:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  41. Isojima T, Doi K, Mitsui J et al (2014) A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome Type 2. J Bone Miner Res 29:992–998

    Article  CAS  PubMed  Google Scholar 

  42. Bertamino M, Severino M, Schiaffino MC et al (2015) New insights into central nervous system involvement in FOP: case report and review of the literature. Am J Med Genet A 167A:2817–2821

    Article  PubMed  Google Scholar 

  43. Severino M, Bertamino M, Tortora D et al (2016) Novel asymptomatic CNS findings in patients with ACVR1/ALK2 mutations causing fibrodysplasia ossificans progressiva. J Med Genet 53:859–864

    Article  CAS  PubMed  Google Scholar 

  44. Kamal NM, Alghamdi HA, Halabi AA et al (2017) Idiopathic hypoparathyroidism with extensive intracranial calcification in children: first report from Saudi Arabia. Medicine 96:e6347

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen L, Chen B, Leng W et al (2015) Identification of a novel de novo GATA3 mutation in a patient with HDR syndrome. J Int Med Res 43:718–724

    Article  CAS  PubMed  Google Scholar 

  46. Nesbit MA, Hannan FM, Howles SA et al (2013) Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 368:2476–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tenhola S, Voutilainen R, Reyes M et al (2016) Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation. Eur J Endocrinol 175:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cacciagli P, Desvignes J-P, Girard N et al (2014) AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet 22:363–368

    Article  CAS  PubMed  Google Scholar 

  49. Smith RS, Kenny CJ, Ganesh V et al (2018) Sodium channel SCN3A (Nav1.3) regulation of human cerebral cortical folding and oral motor development. Neuron 99:905–913.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roizen J, Levine MA (2012) Primary hyperparathyroidism in children and adolescents. J Chin Med Assoc 75:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de la Plaza LR, Ramia Ángel JM, Arteaga Peralta V et al (2016) Brain calcifications and primary hyperparathyroidism. Cirugía Española 94:e5–e7

    Article  Google Scholar 

  52. Bokhari SA, Khan PM, Bokhari EA (2016) Extensive intracranial calcification presenting with neurological symptoms due to primary hypoparathyroidism and secondary hyperparathyroidism: two case reports. J Health Spec 4:157–160

    Article  Google Scholar 

  53. Markowitz ME, Underland L, Gensure R (2016) Parathyroid disorders. Pediatr Rev 37:524–535

    Article  PubMed  Google Scholar 

  54. Fulop M, Zeifer B (1991) Case report: extensive brain calcification in hypoparathyroidism. Am J Med Sci 302:292–295

    Article  CAS  PubMed  Google Scholar 

  55. Haft AS (1953) Idiopathic hypoparathyroidism and cataract; report of four cases. AMA Arch Ophthalmol 50:455–461

    Article  CAS  PubMed  Google Scholar 

  56. Mendelsohn DB, Hertzanu Y (1984) Hypoparathyroidism with cerebral calcification extending beyond the extrapyramidal system. A case report. S Afr Med J 65:781–782

    CAS  PubMed  Google Scholar 

  57. Mantovani G (2011) Clinical review: pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab 96:3020–3030

    Article  CAS  PubMed  Google Scholar 

  58. Visconti P, Posar A, Scaduto MC et al (2016) Neuropsychiatric phenotype in a child with pseudohypoparathyroidism. J Pediatr Neurosci 11:267–270

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hanley P, Lord K, Bauer AJ (2016) Thyroid disorders in children and adolescents: a review. JAMA Pediatr 170:1008–1019

    Article  PubMed  Google Scholar 

  60. Dinizio A, Vincent J, Nickerson J (2016) Intracranial calcifications in the pediatric age group: an imaging review. J Pediatr Neuroradiol 4:049–059

    Article  Google Scholar 

  61. El-Hattab AW, Adesina AM, Jones J, Scaglia F (2015) MELAS syndrome: clinical manifestations, pathogenesis and treatment options. Mol Genet Metab 116:4–12

    Article  CAS  PubMed  Google Scholar 

  62. Malhotra K, Liebeskind DS (2016) Imaging of MELAS. Curr Pain Headache Rep 20:54

    Article  PubMed  Google Scholar 

  63. Kearns TP (1958) Retinitis pigmentosa, external ophthalmoplegia and complete heart block. AMA Arch Ophthalmol 60:280

    Article  CAS  PubMed  Google Scholar 

  64. Saneto RP, Friedman SD, Shaw DWW (2008) Neuroimaging of mitochondrial disease. Mitochondrion 8:396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scheibye-Knudsen M, Croteau DL, Bohr VA (2013) Mitochondrial deficiency in Cockayne syndrome. Mech Ageing Dev 134:275–283

  66. Wilson BT, Stark Z, Sutton RE et al (2016) The Cockayne syndrome natural history (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med 18:483–493

    Article  PubMed  Google Scholar 

  67. Sonmez FM, Celep F, Ugur SA, Tolun A (2006) Severe form of Cockayne syndrome with varying clinical presentation and no photosensitivity in a family. J Child Neurol 21:333–337

    Article  PubMed  Google Scholar 

  68. Koob M, Laugel V, Durand M et al (2010) Neuroimaging in Cockayne syndrome. AJNR Am J Neuroradiol 31:1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patnaik A, Mishra SS, Das S (2017) Extensive intracranial calcification of pseudo-TORCH syndrome with features of Dandy-Walker malformation. Asian J Neurosurg 12:541–543

    Article  PubMed  PubMed Central  Google Scholar 

  70. Knoblauch H, Tennstedt C, Brueck W et al (2003) Two brothers with findings resembling congenital intrauterine infection-like syndrome (pseudo-TORCH syndrome). Am J Med Genet A 120A:261–265

    Article  PubMed  Google Scholar 

  71. Cohen MC, Karaman I, Squier W et al (2012) Recurrent pseudo-TORCH appearances of the brain presenting as “Dandy-Walker” malformation. Pediatr Dev Pathol 15:45–49

    Article  PubMed  Google Scholar 

  72. O’Driscoll MC, Daly SB, Urquhart JE et al (2010) Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet 87:354–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Mochida GH, Ganesh VS, Felie JM et al (2010) A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification and congenital cataracts. Am J Hum Genet 87:882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meuwissen MEC, Schot R, Buta S et al (2016) Human USP18 deficiency underlies Type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213:1163–1174

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ali M, Highet LJ, Lacombe D et al (2006) A second locus for Aicardi-Goutieres syndrome at chromosome 13q14-21. J Med Genet 43:444–450

    Article  CAS  PubMed  Google Scholar 

  76. La Piana R, Uggetti C, Roncarolo F et al (2016) Neuroradiologic patterns and novel imaging findings in Aicardi-Goutières syndrome. Neurology 86:28–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Uggetti C, La Piana R, Orcesi S et al (2009) Aicardi-Goutieres syndrome: neuroradiologic findings and follow-up. AJNR Am J Neuroradiol 30:1971–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tonduti D, Orcesi S, Jenkinson EM et al (2016) Clinical, radiological and possible pathological overlap of cystic leukoencephalopathy without megalencephaly and Aicardi-Goutières syndrome. Eur J Paediatr Neurol 20:604–610

    Article  PubMed  Google Scholar 

  79. Graziano ACE, Cardile V (2015) History, genetic and recent advances on Krabbe disease. Gene 555:2–13

    Article  CAS  PubMed  Google Scholar 

  80. Farina L, Bizzi A, Finocchiaro G et al (2000) MR imaging and proton MR spectroscopy in adult Krabbe disease. AJNR Am J Neuroradiol 21:1478–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Percy AK, Odrezin GT, Knowles PD et al (1994) Globoid cell leukodystrophy: comparison of neuropathology with magnetic resonance imaging. Acta Neuropathol 88:26–32

    Article  CAS  PubMed  Google Scholar 

  82. Wang H, Shao B, Wang L, Ye Q (2015) Fahr’s disease in two siblings in a family: a case report. Exp Ther Med 9:1931–1933

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wu Y (2012) Fahr’s disease: pediatric presentation of a rare neurodegenerative disorder (P01.236). Neurology 78:P01.236–P01.236

    Article  Google Scholar 

  84. Lawton MT, Rutledge WC, Kim H et al (2015) Brain arteriovenous malformations. Nat Rev Dis Primers 1:15008

    Article  PubMed  Google Scholar 

  85. Solomon RA, Connolly ES (2017) Arteriovenous malformations of the brain. N Engl J Med 376:1859–1866

    Article  PubMed  Google Scholar 

  86. Geibprasert S, Pongpech S, Jiarakongmun P et al (2010) Radiologic assessment of brain arteriovenous malformations: what clinicians need to know. Radiographics 30:483–501

    Article  PubMed  Google Scholar 

  87. Weon YC, Yoshida Y, Sachet M et al (2005) Supratentorial cerebral arteriovenous fistulas (AVFs) in children: review of 41 cases with 63 non choroidal single-hole AVFs. Acta Neurochir 147:17–31

    Article  CAS  PubMed  Google Scholar 

  88. Saito Y, Kobayashi N (1981) Cerebral venous angiomas: clinical evaluation and possible etiology. Radiology 139:87–94

    Article  CAS  PubMed  Google Scholar 

  89. Dehkharghani S, Dillon WP, Bryant SO, Fischbein NJ (2010) Unilateral calcification of the caudate and putamen: association with underlying developmental venous anomaly. AJNR Am J Neuroradiol 31:1848–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raychaudhuri R, Batjer HH, Awad IA (2005) Intracranial cavernous angioma: a practical review of clinical and biological aspects. Surg Neurol 63:319–328

    Article  PubMed  Google Scholar 

  91. Zabramski JM, Wascher TM, Spetzler RF et al (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80:422–432

    Article  CAS  PubMed  Google Scholar 

  92. Wang KY, Idowu OR, Lin DDM (2017) Radiology and imaging for cavernous malformations. Handb Clin Neurol 143:249–266

    Article  PubMed  Google Scholar 

  93. Livingston J, Doherty D, Orcesi S et al (2011) COL4A1 mutations associated with a characteristic pattern of intracranial calcification. Neuropediatrics 42:227–233

    Article  CAS  PubMed  Google Scholar 

  94. Donaire A, Carreno M, Gómez B et al (2006) Cortical laminar necrosis related to prolonged focal status epilepticus. J Neurol Neurosurg Psychiatr 77:104–106

    Article  CAS  Google Scholar 

  95. Sawada H, Udaka F, Seriu N et al (1990) MRI demonstration of cortical laminar necrosis and delayed white matter injury in anoxic encephalopathy. Neuroradiology 32:319–321

    Article  CAS  PubMed  Google Scholar 

  96. Khong P-L, Ng K-C, Kwong DLW et al (2005) Cortical laminar necrosis in childhood intracranial germ cell tumor survivors. Pediatr Blood Cancer 44:412–415

    Article  PubMed  Google Scholar 

  97. Niwa T, Aida N, Shishikura A et al (2008) Susceptibility-weighted imaging findings of cortical laminar necrosis in pediatric patients. AJNR Am J Neuroradiol 29:1795–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Samain JL, Haven E, Gille M, Mathys P (2011) Typical CT and MRI features of cortical laminar necrosis. JBR-BTR 94:357

    CAS  PubMed  Google Scholar 

  99. Dang M, Phillips PC (2017) Pediatric brain tumors. Continuum 23:1727–1757

    PubMed  Google Scholar 

  100. Mollá E, Martí-Bonmatí L, Revert A et al (2002) Craniopharyngiomas: identification of different semiological patterns with MRI. Eur Radiol 12:1829–1836

    Article  PubMed  Google Scholar 

  101. Zhao X, Yi X, Wang H, Zhao H (2012) An analysis of related factors of surgical results for patients with craniopharyngiomas. Clin Neurol Neurosurg 114:149–155

    Article  PubMed  Google Scholar 

  102. Lee IH, Zan E, Bell WR et al (2016) Craniopharyngiomas: radiological differentiation of two types. J Korean Neurosurg Soc 59:466–470

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jóźwiak S, Nabbout R, Curatolo P, participants of the TSC Consensus Meeting for SEGA and Epilepsy Management (2013) Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur J Paediatr Neurol 17:348–352

    Article  PubMed  Google Scholar 

  104. Kim J-Y, Jung T-Y, Lee K-H, Kim S-K (2017) Subependymal giant cell astrocytoma presenting with tumoral bleeding: a case report. Brain Tumor Res Treat 5:37–41

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yuh EL, Barkovich AJ, Gupta N (2009) Imaging of ependymomas: MRI and CT. Childs Nerv Syst 25:1203–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mermuys K, Jeuris W, Vanhoenacker PK et al (2005) Best cases from the AFIP: supratentorial ependymoma. Radiographics 25:486–490

    Article  PubMed  Google Scholar 

  107. Morrison G, Sobel DF, Kelley WM, Norman D (1984) Intraventricular mass lesions. Radiology 153:435–442

    Article  CAS  PubMed  Google Scholar 

  108. Koeller KK, Sandberg GD, Armed Forces Institute of Pathology (2002) From the archives of the AFIP. Cerebral intraventricular neoplasms: radiologic-pathologic correlation. Radiographics 22:1473–1505

    Article  PubMed  Google Scholar 

  109. Castillo M, Davis PC, Takei Y, Hoffman JC (1990) Intracranial ganglioglioma: MR, CT and clinical findings in 18 patients. AJNR Am J Neuroradiol 11:109–114

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zentner J, Wolf HK, Ostertun B et al (1994) Gangliogliomas: clinical, radiological and histopathological findings in 51 patients. J Neurol Neurosurg Psychiatry 57:1497–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Packer RJ (1999) Childhood medulloblastoma: progress and future challenges. Brain and Development 21:75–81

    Article  CAS  PubMed  Google Scholar 

  112. Dangouloff-Ros V, Varlet P, Levy R et al (2018) Imaging features of medulloblastoma: conventional imaging, diffusion-weighted imaging, perfusion-weighted imaging and spectroscopy: from general features to subtypes and characteristics. Neurochirurgie https://doi.org/10.1016/j.neuchi.2017.10.003

  113. Koeller KK, Rushing EJ (2003) From the archives of the AFIP: medulloblastoma: a comprehensive review with radiologic-pathologic correlation. Radiographics 23:1613–1637

    Article  PubMed  Google Scholar 

  114. Prasad A, Madan VS, Buxi TB, Prasad ML (1991) Medulloblastoma with extensive calcification. Neuroradiology 33:447–448

    Article  CAS  PubMed  Google Scholar 

  115. Nelson M, Diebler C, Forbes WS (1991) Paediatric medulloblastoma: atypical CT features at presentation in the SIOP II trial. Neuroradiology 33:140–142

    Article  CAS  PubMed  Google Scholar 

  116. Stavrou T, Dubovsky EC, Reaman GH et al (2000) Intracranial calcifications in childhood medulloblastoma: relation to nevoid basal cell carcinoma syndrome. AJNR Am J Neuroradiol 21:790–794

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Davis PC, Hoffman JC, Pearl GS, Braun IF (1986) CT evaluation of effects of cranial radiation therapy in children. AJR Am J Roentgenol 147:587–592

    Article  CAS  PubMed  Google Scholar 

  118. Parmar HA, Hawkins C, Ozelame R et al (2007) Fluid-attenuated inversion recovery ring sign as a marker of dysembryoplastic neuroepithelial tumors. J Comput Assist Tomogr 31:348–353

    Article  PubMed  Google Scholar 

  119. Thom M, Toma A, An S et al (2011) One hundred and one dysembryoplastic neuroepithelial tumors: an adult epilepsy series with immunohistochemical, molecular genetic and clinical correlations and a review of the literature. J Neuropathol Exp Neurol 70:859–878

    Article  CAS  PubMed  Google Scholar 

  120. Arai K, Sato N, Aoki J et al (2006) MR signal of the solid portion of pilocytic astrocytoma on T2-weighted images: is it useful for differentiation from medulloblastoma? Neuroradiology 48:233–237

    Article  PubMed  Google Scholar 

  121. Chourmouzi D, Papadopoulou E, Konstantinidis M et al (2014) Manifestations of pilocytic astrocytoma: a pictorial review. Insights Imaging 5:387–402

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lee YY, Van Tassel P, Bruner JM et al (1989) Juvenile pilocytic astrocytomas: CT and MR characteristics. AJR Am J Roentgenol 152:1263–1270

    Article  CAS  PubMed  Google Scholar 

  123. Kim YE, Shin HJ, Suh Y-L (2012) Pilocytic astrocytoma with extensive psammomatous calcification in the lateral ventricle: a case report. Childs Nerv Syst 28:649–652

    Article  PubMed  Google Scholar 

  124. Aydemir F, Kardes O, Kayaselçuk F, Tufan K (2016) Massive calcified cerebellar pilocytic astrocytoma with rapid recurrence: a rare case. J Korean Neurosurg Soc 59:533–536

    Article  PubMed  PubMed Central  Google Scholar 

  125. Prabhu VC, Brown HG (2005) The pathogenesis of craniopharyngiomas. Childs Nerv Syst 21:622–627

    Article  PubMed  Google Scholar 

  126. Bunin GR, Surawicz TS, Witman PA et al (1998) The descriptive epidemiology of craniopharyngioma. J Neurosurg 89:547–551

    Article  CAS  PubMed  Google Scholar 

  127. Tahiri Elousrouti L, Lamchahab M, Bougtoub N et al (2016) Subependymal giant cell astrocytoma (SEGA): a case report and review of the literature. J Med Case Rep 10:35

    Article  PubMed  Google Scholar 

  128. Nowak J, Seidel C, Pietsch T et al (2015) Systematic comparison of MRI findings in pediatric ependymoblastoma with ependymoma and CNS primitive neuroectodermal tumor not otherwise specified. Neuro Oncol 17:1157–1165

    Article  PubMed  PubMed Central  Google Scholar 

  129. Plaza MJ, Borja MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: posterior fossa and suprasellar tumors. AJR Am J Roentgenol 200:1115–1124

    Article  PubMed  Google Scholar 

  130. Borja MJ, Plaza MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. AJR Am J Roentgenol 200:W483–W503

    Article  PubMed  Google Scholar 

  131. Stanescu Cosson R, Varlet P, Beuvon F et al (2001) Dysembryoplastic neuroepithelial tumors: CT, MR findings and imaging follow-up: a study of 53 cases. J Neuroradiol 28:230–240

    CAS  PubMed  Google Scholar 

  132. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  133. Naeini RM, Yoo JH, Hunter JV (2009) Spectrum of choroid plexus lesions in children. AJR Am J Roentgenol 192:32–40

    Article  PubMed  Google Scholar 

  134. Safaee M, Oh MC, Bloch O et al (2013) Choroid plexus papillomas: advances in molecular biology and understanding of tumorigenesis. Neuro Oncol 15:255–267

    Article  CAS  PubMed  Google Scholar 

  135. Haroun RI, Li KW, Khan W et al (2000) Primary tumors of the choroid plexus. Contemp Neurosurg 22:1–8

    Article  Google Scholar 

  136. Tibbetts KM, Emnett RJ, Gao F et al (2009) Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 117:657–665

    Article  CAS  PubMed  Google Scholar 

  137. Manik M, Rajesh S, Poonam S, Anchal G (2012) Densely calcified pilocytic astrocytoma in the sellar/suprasellar region. Int J Clin Pediatr 1:129–132

    Google Scholar 

  138. Burkhard C, Di Patre P-L, Schüler D et al (2003) A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma. J Neurosurg 98:1170–1174

    Article  PubMed  Google Scholar 

  139. Creach KM, Rubin JB, Leonard JR et al (2012) Oligodendrogliomas in children. J Neurooncol 106:377–382

    Article  PubMed  Google Scholar 

  140. Smirniotopoulos JG, Rushing EJ, Mena H (1992) Pineal region masses: differential diagnosis. Radiographics 12:577–596

    Article  CAS  PubMed  Google Scholar 

  141. Mehta N, Bhagwati S, Parulekar G (2009) Meningiomas in children: a study of 18 cases. J Pediatr Neurosci 4:61–65

    Article  PubMed  PubMed Central  Google Scholar 

  142. Deftereos SP, Karagiannakis GK, Spanoudaki A et al (2008) Optic nerve sheath meningioma: a case report. Cases J 1:423

    Article  PubMed  PubMed Central  Google Scholar 

  143. D’Amore A, Borderi A, Chiaramonte R et al (2013) CT and MR studies of giant dermoid cyst associated to fat dissemination at the cortical and cisternal cerebral spaces. Case Rep Radiol 2013:239258

    PubMed  PubMed Central  Google Scholar 

  144. Pruzincová L, Steno J, Srbecký M et al (2009) MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol 19:2716–2727

    Article  PubMed  Google Scholar 

  145. Mamlouk MD, Handwerker J, Ospina J, Hasso AN (2013) Neuroimaging findings of the post-treatment effects of radiation and chemotherapy of malignant primary glial neoplasms. Neuroradiol J 26:396–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Durão C, Pedrosa F (2017) Undiagnosed intracranial lipoma associated with sudden death. Hum Pathol Case Reports 7:39–40

    Article  Google Scholar 

  147. Illum F (1980) Calcification of the basal ganglia following carbon monoxide poisoning. Neuroradiology 19:213–214

    Article  CAS  PubMed  Google Scholar 

  148. Abbas M, Bakhaidar M, Baeesa SS (2018) Intracranial dystrophic calcification of ventriculoperitoneal shunt: a case report. Pediatr Neurosurg 53:356–359

    Article  PubMed  Google Scholar 

  149. Currarino G, Weinberg A (1974) Os supra petrosum of Meckel. AJR Am J Roentgenol Radium Ther Nucl Med 121:139–142

    Article  CAS  Google Scholar 

  150. Allen R, O’Brien BM (2009) Uses of misoprostol in obstetrics and gynecology. Rev Obstet Gynecol 2:159–168

    PubMed  PubMed Central  Google Scholar 

  151. Guedes ZCF (2014) Möbius syndrome: misoprostol use and speech and language characteristics. Int Arch Otorhinolaryngol 18:239–243

    Article  PubMed  PubMed Central  Google Scholar 

  152. Picciolini O, Porro M, Cattaneo E et al (2016) Moebius syndrome: clinical features, diagnosis, management and early intervention. Ital J Pediatr 42:56

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ouanounou S, Saigal G, Birchansky S (2005) Möbius syndrome. AJNR Am J Neuroradiol 26:430–432

    PubMed  PubMed Central  Google Scholar 

  154. Staut CC, Naidich TP (1998) Urbach-Wiethe disease (lipoid proteinosis). Pediatr Neurosurg 28:212–214

    Article  CAS  PubMed  Google Scholar 

  155. Gonçalves FG, de Melo MB, de L Matos V et al (2010) Amygdalae and striatum calcification in lipoid proteinosis. AJNR Am J Neuroradiol 31:88–90

    Article  PubMed  PubMed Central  Google Scholar 

  156. García Duque S, Medina Lopez D, Ortiz de Méndivil A, Diamantopoulos Fernández J (2016) Calcifying pseudoneoplasms of the neuraxis: report on four cases and review of the literature. Clin Neurol Neurosurg 143:116–120

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Guimarães Gonçalves.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CME activity This article has been selected as the CME activity for the current month. Please visit the SPR website at www.pedrad.org on the Education page and follow the instructions to complete this CME activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, F.G., Caschera, L., Teixeira, S.R. et al. Intracranial calcifications in childhood: Part 2. Pediatr Radiol 50, 1448–1475 (2020). https://doi.org/10.1007/s00247-020-04716-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04716-y

Keywords

Navigation