Skip to main content

Advertisement

Log in

Computed tomography in cystic fibrosis lung disease: a focus on radiation exposure

  • Minisymposium: Specialist Pediatric Radiology-Does it add value?
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Thoracic computed tomography (CT) is the imaging reference method in the diagnosis, assessment and management of lung disease. In the setting of cystic fibrosis (CF), CT demonstrates increased sensitivity compared with pulmonary function tests and chest radiography, and findings correlate with clinical outcomes. Better understanding of the aetiology of CF lung disease indicates that even asymptomatic infants with CF can have irreversible pulmonary pathology. Surveillance and early diagnosis of lung disease in CF are important to preserve lung parenchyma and to optimise long-term outcomes. CF is associated with increased cumulative radiation exposure due to the requirement for repeated imaging from a young age. Radiation dose optimisation, important for the safe use of CT in children with CF, is best achieved in a team environment where paediatric radiologists work closely with paediatric respiratory physicians, physicists and radiography technicians to achieve the best patient outcomes. Despite the radiation doses incurred, CT remains a vital imaging tool in children with CF. Radiologists with special interests in CT dose optimisation and respiratory disease are key to the appropriate use of CT in paediatric imaging. Paediatric radiologists strive to minimise radiation dose to children whilst providing the best possible assessment of lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Debray D, Kelly D, Houwen R et al (2011) Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J Cyst Fibros 10:S29–S36

    Article  PubMed  Google Scholar 

  2. Ledford H (2012) Cystic fibrosis drug Vertex’s latest triumph. Nat Biotechnol 30:201–202

    Article  CAS  PubMed  Google Scholar 

  3. Ramsey BW, Davies J, McElvaney NG et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang W, Zhang X, Zhang YH et al (2016) Lumacaftor/ivacaftor combination for cystic fibrosis patients homozygous for Phe508del-CFTR. Drugs Today (Barc) 52:229–237

    CAS  Google Scholar 

  5. O’Connell OJ, McWilliams S, McGarrigle A et al (2012) Radiological imaging in cystic fibrosis: cumulative effective dose and changing trends over 2 decades. Chest 141:1575–1583

    Article  PubMed  Google Scholar 

  6. Ronan NJ, Einarsson GG, Twomey M et al (2018) CORK study in cystic fibrosis: sustained improvements in ultra-low-dose chest CT scores after CFTR modulation with Ivacaftor. Chest 153:395–403

    Article  PubMed  Google Scholar 

  7. Martínez TM, Llapur CJ, Williams TH et al (2005) High-resolution computed tomography imaging of airway disease in infants with cystic fibrosis. Am J Respir Crit Care Med 172:1133–1138

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mott LS, Park J, Murray CP et al (2012) Progression of early structural lung disease in young children with cystic fibrosis assessed using CT. Thorax 67:509–516

    Article  PubMed  Google Scholar 

  9. Gustafsson PM, De Jong PA, Tiddens HA, Lindblad A (2008) Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax 63:129–134

    Article  CAS  PubMed  Google Scholar 

  10. de Jong PA, Nakano Y, Lequin MH et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97

    Article  PubMed  Google Scholar 

  11. Pillarisetti N, Williamson E, Linnane B et al (2011) Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am J Respir Crit Care Med 184:75–81

    Article  PubMed  Google Scholar 

  12. de Jong PA, Lindblad A, Rubin L et al (2006) Progression of lung disease on computed tomography and pulmonary function tests in children and adults with cystic fibrosis. Thorax 61:80–85

    Article  PubMed  Google Scholar 

  13. Proesmans M (2017) Best practices in the treatment of early cystic fibrosis lung disease. Ther Adv Respir Dis 11:97–104

    Article  PubMed  Google Scholar 

  14. Cademartiri F, Luccichenti G, Palumbo AA et al (2008) Predictive value of chest CT in patients with cystic fibrosis: a single-center 10-year experience. AJR Am J Roentgenol 190:1475–1480

    Article  PubMed  Google Scholar 

  15. Brody AS, Klein JS, Molina PL et al (2004) High-resolution computed tomography in young patients with cystic fibrosis: distribution of abnormalities and correlation with pulmonary function tests. J Pediatr 145:32–38

    Article  PubMed  Google Scholar 

  16. Koenigkam-Santos M, de Paula WD, Gompelmann D et al (2013) Endo-bronchial valves in severe emphysematous patients: CT evaluation of lung fissures completeness, treatment radiological response and quantitative emphysema analysis. Radiol Bras 46:15–22

    Article  Google Scholar 

  17. Montaudon M, Berger P, Cangini-Sacher A et al (2007) Bronchial measurement with three-dimensional quantitative thin-section CT in patients with cystic fibrosis. Radiology 242:573–581

    Article  PubMed  Google Scholar 

  18. Santos MK, Cruvinel DL, de Menezes MB et al (2016) Quantitative computed tomography analysis of the airways in patients with cystic fibrosis using automated software: correlation with spirometry in the evaluation of severity. Radiol Bras 49:351–357

    Article  PubMed  PubMed Central  Google Scholar 

  19. Donadieu J, Roudier C, Saguintaah M et al (2007) Estimation of the radiation dose from thoracic CT scans in a cystic fibrosis population. Chest 132:1233–1238

    Article  PubMed  Google Scholar 

  20. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  Google Scholar 

  21. Zwirewich CV, Mayo JR, Müller NL (1991) Low-dose high-resolution CT of lung parenchyma. Radiology 180:413-417

  22. Kopp AF, Heuschmid M, Claussen CD (2002) Multidetector helical CT of the liver for tumor detection and characterization. Eur Radiol 12:745–752

    Article  PubMed  Google Scholar 

  23. Toth T, Ge Z, Daly MP (2007) The influence of patient centering on CT dose and image noise. Med Phys 34:3093–3101

    Article  PubMed  Google Scholar 

  24. Olden KL, Kavanagh RG, James K et al (2018) Assessment of isocenter alignment during CT colonography: implications for clinical practice. Radiography (Lond) 24:334–339

    Article  CAS  Google Scholar 

  25. Greess H, Nömayr A, Wolf H et al (2002) Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE dose). Eur Radiol 12:1571–1576

    Article  PubMed  Google Scholar 

  26. Leipsic J, Nguyen G, Brown J et al (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099

    Article  PubMed  Google Scholar 

  27. Reader AJ, Erlandsson K, Flower MA, Ott RJ (1998) Fast accurate iterative reconstruction for low-statistics positron volume imaging. Phys Med Biol 43:835–846

    Article  CAS  PubMed  Google Scholar 

  28. Kambadakone AR, Chaudhary NA, Desai GS et al (2011) Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. AJR Am J Roentgenol 196:W743–W752

    Article  PubMed  Google Scholar 

  29. Laqmani A, Buhk JH, Henes FO et al (2013) Impact of a 4th generation iterative reconstruction technique on image quality in low-dose computed tomography of the chest in immunocompromised patients. Rofo 185:749–757

    Article  CAS  PubMed  Google Scholar 

  30. Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22:1613–1623

    Article  PubMed  Google Scholar 

  31. Neroladaki A, Botsikas D, Boudabbous S et al (2013) Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations. Eur Radiol 23:360–366

    Article  PubMed  Google Scholar 

  32. Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573

    Article  PubMed  Google Scholar 

  33. Itoh S, Ikeda M, Arahata S et al (2000) Lung cancer screening: minimum tube current required for helical CT. Radiology 215:175–183

    Article  CAS  PubMed  Google Scholar 

  34. O’Connor OJ, Vandeleur M, McGarrigle AM et al (2010) Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients. Radiology 257:820–829

    Article  PubMed  Google Scholar 

  35. Bhalla M, Turcios N, Aponte V et al (1991) Cystic fibrosis: scoring system with thin-section CT. Radiology 179:783–788

    Article  CAS  PubMed  Google Scholar 

  36. Long FR (2007) High-resolution computed tomography of the lung in children with cystic fibrosis: technical factors. Proc Am Thorac Soc 4:306–309

    Article  PubMed  Google Scholar 

  37. Bonnel AS, Song SM, Kesavarju K et al (2004) Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 38:396–405

    Article  PubMed  Google Scholar 

  38. Loeve M, Lequin MH, de Bruijne M et al (2009) Cystic fibrosis: are volumetric ultra-low-dose expiratory CT scans sufficient for monitoring related lung disease? Radiology 253:223–229

    Article  PubMed  Google Scholar 

  39. Long FR, Williams RS, Adler BH, Castile RG (2005) Comparison of quiet breathing and controlled ventilation in the high-resolution CT assessment of airway disease in infants with cystic fibrosis. Pediatr Radiol 35:1075–1080

    Article  PubMed  Google Scholar 

  40. Eichinger M, Heussel CP, Kauczor HU et al (2010) Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease. J Magn Reson Imaging 32:1370–1378

    Article  PubMed  Google Scholar 

  41. Sun Y, O’Sullivan BP, Roche JP et al (2011) Using hyperpolarized 3He MRI to evaluate treatment efficacy in cystic fibrosis patients. J Magn Reson Imaging 34:1206–1211

    Article  PubMed  Google Scholar 

  42. Larson DB, Johnson LW, Schnell BM et al (2011) Rising use of CT in child visits to the emergency department in the United States, 1995-2008. Radiology 259:793–801

    Article  PubMed  Google Scholar 

  43. AlSuwaidi JS, AlBalooshi LG, AlAwadhi HM et al (2013) Continuous monitoring of CT dose indexes at Dubai hospital. AJR Am J Roentgenol 201:858–864

    Article  PubMed  Google Scholar 

  44. Brink JA (2014) Dose tracking and rational examination selection for the medically-exposed population. Health Phys 106:225–228

    Article  CAS  PubMed  Google Scholar 

  45. Brasfield D, Hicks G, Soong S et al (1980) Evaluation of scoring system of the chest radiograph in cystic fibrosis: a collaborative study. AJR Am J Roentgenol 134:1195–1198

    Article  CAS  PubMed  Google Scholar 

  46. Rosenow T, Oudraad MC, Murray CP et al (2015) PRAGMA-CF. a quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am J Respir Crit Care Med 191:1158–1165

    Article  PubMed  Google Scholar 

  47. Rybacka A, Karmelita-Katulska K (2016) The role of computed tomography in monitoring patients with cystic fibrosis. Pol J Radiol 81:141–145

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lucaya J, Piqueras J, García-Peña P et al (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence, and image quality. AJR Am J Roentgenol 175:985–992

    Article  CAS  PubMed  Google Scholar 

  49. Rogalla P, Stöver B, Scheer I et al (1999) Low-dose spiral CT: applicability to paediatric chest imaging. Pediatr Radiol 29:565–569

    Article  CAS  PubMed  Google Scholar 

  50. Gilljam M, Ellis L, Corey M et al (2004) Clinical manifestations of cystic fibrosis among patients with diagnosis in adulthood. Chest 126:1215–1224

    Article  PubMed  Google Scholar 

  51. Santis G, Hodson ME, Strickland B (1991) High resolution computed tomography in adult cystic fibrosis patients with mild lung disease. Clin Radiol 44:20–22

    Article  CAS  PubMed  Google Scholar 

  52. Nick JA, Rodman DM (2005) Manifestations of cystic fibrosis diagnosed in adulthood. Curr Opin Pulm Med 11:513–518

    PubMed  Google Scholar 

  53. Tubiana M, Feinendegen LE, Yang C, Kaminski JM (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed  PubMed Central  Google Scholar 

  55. O’Neill S, Glynn D, Murphy KP et al (2018) An assessment of the quality of CT radiation dose information on the internet. J Am Coll Radiol 15:11–18

    Article  PubMed  Google Scholar 

  56. Harvey HB, Brink JA, Frush DP (2015) Informed consent for radiation risk from CT is unjustified based on the current scientific evidence. Radiology 275:321–325

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen J. O’Connor.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyce, S., Carey, B.W., Moore, N. et al. Computed tomography in cystic fibrosis lung disease: a focus on radiation exposure. Pediatr Radiol 51, 544–553 (2021). https://doi.org/10.1007/s00247-020-04706-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04706-0

Keywords

Navigation