Skip to main content
Log in

Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Hyperpolarized 129Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed.

Objective

To assess the feasibility, safety and tolerability of hyperpolarized 129Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis.

Materials and methods

Seventeen healthy control subjects (ages 6–15 years, 11 boys) and 11 children with cystic fibrosis (ages 8–16 years, 4 boys) underwent 129Xe MRI, receiving up to three doses of 129Xe gas prepared by either a commercially available or a homebuilt 129Xe polarizer. Subject heart rate and SpO2 were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI.

Results

All children tolerated multiple doses of 129Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO2 (mean –6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO2 values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following 129Xe MRI, but all were deemed unrelated to the study.

Conclusion

The feasibility, safety and tolerability of 129Xe MRI has been assessed in a small group of children as young as 6 years. SpO2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were consistent with the known anesthetic properties of xenon and with previous safety assessments of 129Xe MRI in adults. Hyperpolarized 129Xe is a safe and well-tolerated inhaled contrast agent for pulmonary MR imaging in healthy children and in children with cystic fibrosis who have mild to moderate lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mugler JP 3rd, Driehuys B, Brookeman JR et al (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37:809–815

    Article  PubMed  Google Scholar 

  2. Black RD, Middleton HL, Cates GD et al (1996) In vivo He-3 MR images of guinea pig lungs. Radiology 199:867–870

    Article  CAS  PubMed  Google Scholar 

  3. MacFall JR, Charles HC, Black RD et al (1996) Human lung air spaces: potential for MR imaging with hyperpolarized He-3. Radiology 200:553–558

    Article  CAS  PubMed  Google Scholar 

  4. Spector ZZ, Emami K, Fischer MC et al (2005) Quantitative assessment of emphysema using hyperpolarized 3He magnetic resonance imaging. Magn Reson Med 53:1341–1346

    Article  CAS  PubMed  Google Scholar 

  5. Emami K, Kadlecek SJ, Woodburn JM et al (2010) Improved technique for measurement of regional fractional ventilation by hyperpolarized 3He MRI. Magn Reson Med 63:137–150

    PubMed  PubMed Central  Google Scholar 

  6. Yablonskiy DA, Sukstanskii AL, Leawoods JC et al (2002) Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized He-3 diffusion MRI. Proc Natl Acad Sci U S A 99:3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saam BT, Yablonskiy DA, Kodibagkar VD et al (2000) MR imaging of diffusion of He-3 gas in healthy and diseased lungs. Magn Reson Med 44:174–179

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Nguyen NM, Yablonskiy DA et al (2011) Imaging lung microstructure in mice with hyperpolarized He-3 diffusion MRI. Magn Reson Med 65:620–626

    Article  PubMed  Google Scholar 

  9. Yablonskiy DA, Sukstanskii AL, Quirk JD et al (2014) Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med 71:486

    Article  PubMed  Google Scholar 

  10. Kirby M, Svenningsen S, Kanhere N et al (1985) Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema. J Appl Physiol 114:707–715

    Article  Google Scholar 

  11. Dregely I, Mugler JP III, Ruset IC et al (2011) Hyperpolarized xenon-129 gas-exchange imaging of lung microstructure: first case studies in subjects with obstructive lung disease. J Magn Reson Imaging 33:1052–1062

    Article  PubMed  PubMed Central  Google Scholar 

  12. McMahon CJ, Dodd JD, Hill C et al (2006) Hyperpolarized 3helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry. Eur Radiol 16:2483–2490

    Article  PubMed  Google Scholar 

  13. Donnelly LF, MacFall JR, McAdams HP et al (1999) Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung — preliminary observations. Radiology 212:885–889

    Article  CAS  PubMed  Google Scholar 

  14. de Lange EE, Altes TA, Patrie JT et al (2006) Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 130:1055–1062

    Article  PubMed  Google Scholar 

  15. Altes TA, Powers PL, Knight-Scott J et al (2001) Hyperpolarized He-3 MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imaging 13:378–384

    Article  CAS  PubMed  Google Scholar 

  16. Thomen RP, Sheshadri A, Quirk JD et al (2015) Regional ventilation changes in severe asthma after bronchial thermoplasty with (3)He MR imaging and CT. Radiology 274:250–259

    Article  PubMed  Google Scholar 

  17. Appelt S, Baranga AB, Erickson CJ et al (1998) Theory of spin-exchange optical pumping of He-3 and Xe-129. Phys Rev A 58:1412–1439

    Article  CAS  Google Scholar 

  18. Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642

    Article  CAS  Google Scholar 

  19. Fain S, Schiebler ML, McCormack DG et al (2010) Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J Magn Reson Imaging 32:1398–1408

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mugler JP 3rd, Altes TA (2013) Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 37:313–331

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lilburn DM, Pavlovskaya GE, Meersmann T (2013) Perspectives of hyperpolarized noble gas MRI beyond 3He. J Magn Reson 229:173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walkup LL, Woods JC (2014) Translational applications of hyperpolarized 3He and 129Xe. NMR Biomed 27:1429–1438

    Article  CAS  PubMed  Google Scholar 

  23. Altes TA, de Lange EE (2003) Applications of hyperpolarized helium-3 gas magnetic resonance imaging in pediatric lung disease. Top Magn Reson Imaging 14:231–236

    Article  PubMed  Google Scholar 

  24. Altes TA, Mata J, de Lange EE et al (2006) Assessment of lung development using hyperpolarized helium-3 diffusion MR imaging. J Magn Reson Imaging 24:1277–1283

    Article  PubMed  Google Scholar 

  25. Altes TA, Mata J, Froh DK et al (2006) Abnormalities of lung structure in children with brochopulmonary dysplasia as assessed by diffusion hyperpolarized helium-3 MRI. Proc Intl Soc Magn Reson Med 14:86

    Google Scholar 

  26. Kirby M, Coxson HO, Parraga G (2013) Pulmonary functional magnetic resonance imaging for paediatric lung disease. Paediatr Respir Rev 14:180–189

    PubMed  Google Scholar 

  27. van Beek EJ, Hill C, Woodhouse N et al (2007) Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol 17:1018–1024

  28. Woodhouse N, Wild JM, van Beek EJ et al (2009) Assessment of hyperpolarized 3He lung MRI for regional evaluation of interventional therapy: a pilot study in pediatric cystic fibrosis. J Magn Reson Imaging 30:981–988

    Article  PubMed  Google Scholar 

  29. Koumellis P, van Beek EJ, Woodhouse N et al (2005) Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3He MRI-preliminary results in children with cystic fibrosis. J Magn Reson Imaging 22:420–426

    Article  PubMed  Google Scholar 

  30. Sun Y, O’Sullivan BP, Roche JP et al (2011) Using hyperpolarized 3He MRI to evaluate treatment efficacy in cystic fibrosis patients. J Magn Reson Imaging 34:1206–1211

    Article  PubMed  Google Scholar 

  31. Cadman RV, Lemanske RF, Evans MD et al (2013) Pulmonary He-3 magnetic resonance imaging of childhood asthma. J Allergy Clin Immunol 131:369–376

    Article  PubMed  Google Scholar 

  32. de Lange EE, Altes TA, Patrie JT et al (2007) The variability of regional airflow obstruction within the lungs of patients with asthma: assessment with hyperpolarized helium-3 magnetic resonance imaging. J Allergy Clin Immunol 119:1072–1078

    Article  PubMed  Google Scholar 

  33. Narayanan M, Owers-Bradley J, Beardsmore CS et al (2012) Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am J Respir Crit Care Med 185:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Narayanan M, Beardsmore CS, Owers-Bradley J et al (2013) Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am J Respir Crit Care Med 187:1104–1109

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anglister J, Grzesiek S, Ren H et al (1993) Isotope-edited multidimensional NMR of calcineurin B in the presence of the non-deuterated detergent CHAPS. J Biomol NMR 3:121–126

    Article  CAS  PubMed  Google Scholar 

  36. Nikolaou P, Coffey AM, Walkup LL et al (2014) XeNA: an automated ‘open-source’ (129)Xe hyperpolarizer for clinical use. Magn Reson Imaging 32:541–550

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nikolaou P, Coffey AM, Walkup LL et al (2014) A 3D-printed high power nuclear spin polarizer. J Am Chem Soc 136:1636–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Korchak SE, Kilian W, Mitschang L (2013) Configuration and performance of a mobile (129)Xe polarizer. Appl Magn Reson 44:65–80

    Article  CAS  PubMed  Google Scholar 

  39. Stewart NJ, Norquay G, Griffiths PD et al (2015) Feasibility of human lung ventilation imaging using highly polarized naturally abundant xenon and optimized three-dimensional steady-state free precession. Magn Reson Med 74:346–352

    Article  CAS  PubMed  Google Scholar 

  40. Hersman FW, Ruset IC, Ketel S et al (2008) Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol 15:683–692

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kirby M, Svenningsen S, Owrangi A et al (2012) Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265:600–610

    Article  PubMed  Google Scholar 

  42. Patz S, Hersman FW, Muradian I et al (2007) Hyperpolarized (129)Xe MRI: a viable functional lung imaging modality? Eur J Radiol 64:335–344

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen RY, Fan FC, Kim S et al (1980) Tissue-blood partition coefficient for xenon: temperature and hematocrit dependence. J Appl Physiol Respir Environ Exerc Physiol 49:178–183

    CAS  PubMed  Google Scholar 

  44. Mugler JP 3rd, Altes TA, Ruset IC et al (2010) Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci U S A 107:21707–21712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cleveland ZI, Cofer GP, Metz G et al (2010) Hyperpolarized Xe MR imaging of alveolar gas uptake in humans. PLoS One 5, e12192

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaushik SS, Freeman MS, Cleveland ZI et al (2013) Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging. J Appl Physiol 115:850–860

  47. Qing K, Mugler JP 3rd, Altes TA et al (2014) Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed 27:1490–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ruppert K, Altes TA, Mata JF et al (2016) Detecting pulmonary capillary blood pulsations using hyperpolarized xenon-129 chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med 75:1771–1780

    Article  CAS  PubMed  Google Scholar 

  49. Nakata Y, Goto T, Ishiguro Y et al (2001) Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology 94:611–614

    Article  CAS  PubMed  Google Scholar 

  50. Sanders RD, Franks NP, Maze M (2003) Xenon: no stranger to anaesthesia. Br J Anaesth 91:709–717

    Article  CAS  PubMed  Google Scholar 

  51. Driehuys B, Martinez-Jimenez S, Cleveland ZI et al (2012) Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized Xe-129 MR imaging in healthy volunteers and patients. Radiology 262:279–289

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shukla Y, Wheatley A, Kirby M et al (2012) Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease. Acad Radiol 19:941–951

    Article  PubMed  Google Scholar 

  53. Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624

    Article  PubMed  Google Scholar 

  54. Goo HW, Chae EJ, Seo JB et al (2008) Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol 38:1113–1116

    Article  PubMed  Google Scholar 

  55. Goo HW, Yang DH, Hong SJ et al (2010) Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 40:1490–1497

    Article  PubMed  Google Scholar 

  56. Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  PubMed  Google Scholar 

  57. Farrell PM, Rosenstein BJ, White TB et al (2008) Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr 153:S4–S14

  58. Walkup L, Higano N, Ellis-Caleo T et al (2014) Scaling-up an ‘open-source’ 129Xe hyperpolarizer for human pulmonary imaging applications. Presented at the Experimental Nuclear Magnetic Resonance Conference, Boston

  59. Walkup LL, Thomen RP, Higano NS et al (2016) Initial experience performing hyperpolarized 129Xe MRI in young, pediatric subjects using a homebuilt Xe polarizer. Presented at the Experimental Nuclear Magnetic Resonance Conference, Pittsburgh

  60. Loew W, Thomen R, Pratt R et al (2015) A volume saddle coil for hyperpolarized 129Xe lung imaging. Proc Intl Soc Magn Reson Med 23:1507

    Google Scholar 

  61. Miller GW, Altes TA, Brookeman JR et al (2004) Hyperpolarized 3He lung ventilation imaging with B1-inhomogeneity correction in a single breath-hold scan. MAGMA 16:218–226

    Article  CAS  PubMed  Google Scholar 

  62. Yablonskiy DA, Sukstanskii AL, Quirk JD (2015) Diffusion lung imaging with hyperpolarized gas MRI. NMR Biomed. doi:10.1002/nbm.3448

    PubMed  Google Scholar 

  63. Stocks J, Quanjer PH (1995) Reference values for residual volume, functional residual capacity and total lung capacity. ATS workshop on lung volume measurements. Official statement of the European Respiratory Society. Eur Respir J 8:492–506

    Article  CAS  PubMed  Google Scholar 

  64. Zapletal A, Paul T, Samanek M (1977) Significance of contemporary methods of lung function testing for the detection of airway obstruction in children and adolescents (author’s transl). Z Erkr Atmungsorgane 149:343–371

    CAS  PubMed  Google Scholar 

  65. West JB (2012) Respiratory physiology: the essentials, 9th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  66. Lutey BA, Lefrak SS, Woods JC et al (2008) Hyperpolarized 3He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology 248:655–661

    Article  PubMed  PubMed Central  Google Scholar 

  67. Salerno M, Altes TA, Brookeman JR et al (2003) Rapid hyperpolarized 3He diffusion MRI of healthy and emphysematous human lungs using an optimized interleaved-spiral pulse sequence. J Magn Reson Imaging 17:581–588

    Article  PubMed  Google Scholar 

  68. Salerno M, Altes TA, Brookeman JR et al (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46:667–677

    Article  CAS  PubMed  Google Scholar 

  69. Kaushik SS, Cleveland ZI, Cofer GP et al (2011) Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med 65:1154–1165

    Article  PubMed  Google Scholar 

  70. Virgincar RS, Cleveland ZI, Kaushik SS et al (2013) Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease. NMR Biomed 26:424–435

    Article  CAS  PubMed  Google Scholar 

  71. Kauczor HU, Hofmann D, Kreitner KF et al (1996) Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201:564–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Bastiaan Driehuys, Leslie Korbee, Jenny Jeffries, Lisa McCord, Colleen Murphy and Jeanne Dahlquist for regulatory assistance; Laurie Vanderah, Beth Decker and Emily Bell for subject monitoring; Matthew Lanier, Brynne Williams and Lacey Haas for subject scanning; Dan Dwyer of Teleflex Inc. for the gift of the custom gas-delivery mouthpieces; and Matthew Freeman, Nara Higano, Jim Wild, Charles Dumoulin and the CCHMC IRC Coil Engineering Lab for technical assistance.

This work was supported by the National Institutes of Health (T32HL007752, R01HL116226), Cystic Fibrosis Foundation (CLANCY 15R0), and University of Cincinnati, Center for Clinical and Translational Science and Training (T1 Core, NIH 1UL1TR001425-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zackary I. Cleveland.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walkup, L.L., Thomen, R.P., Akinyi, T.G. et al. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 46, 1651–1662 (2016). https://doi.org/10.1007/s00247-016-3672-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3672-1

Keywords

Navigation