Skip to main content
Log in

Valved Conduits for Right Ventricular Outflow Tract Reconstruction: A Review of Current Technologies and Future Directions

  • Review
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The need for right ventricular outflow tract reconstruction is common and growing in congenital heart surgery given expanding indications for the repair of congenital as well as acquired heart disease. Various valved conduit options currently exist including homografts, xenograft pulmonary valved conduits (Contegra™), and porcine valved conduits. The major limitation for all conduits is implant durability, which requires reoperation. Currently, cryopreserved homografts are often used given their superiority shown in long-term data. Significant limitations remain in the cost and availability of the graft, particularly for smaller sizes. Contegra conduits are available in a variety of sizes. Nonetheless, the data regarding long-term durability are less robust and studies comparing durability with homografts have been conflicting. Additionally, there is concern for increased rates of late endocarditis in this conduit. Porcine valved conduits offer a reliable option but are limited by structural valve degeneration associated with all types of bioprosthetic heart valve replacements. New developments in the field of tissue engineering have produced promising bio-restorative valved conduits that may overcome many of the limitations of previous conduit technologies. These remain in the early stages of clinical testing. This review summarizes the clinical data surrounding the conduits used most commonly in clinical practice today and explores emerging technologies that may bring us closer to developing the ideal conduit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gilboa SM, Devine OJ, Kucik JE et al (2016) Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation 134(2):101–109. https://doi.org/10.1161/CIRCULATIONAHA.115.019307

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ross DN, Somerville J (1966) Correction of pulmonary atresia with a homograft aortic valve. Lancet 2(7479):1446–1447. https://doi.org/10.1016/s0140-6736(66)90600-3

    Article  CAS  PubMed  Google Scholar 

  3. Behrendt DM, Kirsh MM, Stern A, Sigmann J, Perry B, Sloan H (1974) The surgical therapy for pulmonary artery–right ventricular discontinuity. Ann Thorac Surg 18(2):122–137. https://doi.org/10.1016/s0003-4975(10)64337-8

    Article  CAS  PubMed  Google Scholar 

  4. Huyan Y, Chang Y, Song J (2021) Application of homograft valved conduit in cardiac surgery. Front Cardiovasc Med 8:7408710. https://doi.org/10.3389/fcvm.2021.740871

    Article  Google Scholar 

  5. Xue Y, Kossar AP, Abramov A et al (2022) Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes. Cardiovasc Res. https://doi.org/10.1093/cvr/cvac002

    Article  PubMed Central  Google Scholar 

  6. Saleeb SF, Newburger JW, Geva T et al (2014) Accelerated degeneration of a bovine pericardial bioprosthetic aortic valve in children and young adults. Circulation 130(1):51–60. https://doi.org/10.1161/CIRCULATIONAHA.114.009835

    Article  PubMed  Google Scholar 

  7. Nomoto R, Sleeper LA, Borisuk MJ et al (2016) Outcome and performance of bioprosthetic pulmonary valve replacement in patients with congenital heart disease. J Thorac Cardiovasc Surg 152(5):1333-1342 e3. https://doi.org/10.1016/j.jtcvs.2016.06.064

    Article  PubMed  Google Scholar 

  8. Daly RC, Orszulak TA, Schaff HV, McGovern E, Wallace RB (1991) Long-term results of aortic valve replacement with nonviable homografts. Circulation 84(5 Suppl):III81–III88

    CAS  PubMed  Google Scholar 

  9. Clarke DR, Campbell DN, Hayward AR, Bishop DA (1993) Degeneration of aortic valve allografts in young recipients. J Thorac Cardiovasc Surg 105(5):934–941 (Discussion 941-942)

    Article  CAS  PubMed  Google Scholar 

  10. Legare JF, Lee TD, Ross DB (2000) Cryopreservation of rat aortic valves results in increased structural failure. Circulation 102(19 Suppl 3):III75–III78. https://doi.org/10.1161/01.cir.102.suppl_3.iii-75

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien MF, Stafford EG, Gardner MA, Pohlner PG, McGiffin DC (1987) A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies. J Thorac Cardiovasc Surg 94(6):812–823

    Article  CAS  PubMed  Google Scholar 

  12. Steffen V, Marsch G, Burgwitz K, Kuehn C, Teebken OE (2016) Resistance to infection of long-term cryopreserved human aortic valve allografts. J Thorac Cardiovasc Surg 151(5):1251–1259. https://doi.org/10.1016/j.jtcvs.2015.11.029

    Article  PubMed  Google Scholar 

  13. Sharma A, Cote AT, Hosking MCK, Harris KC (2017) A systematic review of infective endocarditis in patients with bovine jugular vein valves compared with other valve types. JACC Cardiovasc Interv 10(14):1449–1458. https://doi.org/10.1016/j.jcin.2017.04.025

    Article  PubMed  Google Scholar 

  14. Lewis MJ, Malm T, Hallbergson A et al (2022) Long-term follow-up of right ventricle to pulmonary artery biologic valved conduits used in pediatric congenital heart surgery. Pediatr Cardiol. https://doi.org/10.1007/s00246-022-02956-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brown JW, Ruzmetov M, Rodefeld MD, Vijay P, Darragh RK (2006) Valved bovine jugular vein conduits for right ventricular outflow tract reconstruction in children: an attractive alternative to pulmonary homograft. Ann Thorac Surg 82(3):909–916. https://doi.org/10.1016/j.athoracsur.2006.03.008

    Article  PubMed  Google Scholar 

  16. Askovich B, Hawkins JA, Sower CT et al (2007) Right ventricle-to-pulmonary artery conduit longevity: is it related to allograft size? Ann Thorac Surg 84(3):907–911. https://doi.org/10.1016/j.athoracsur.2007.04.104. (Discussion 911-912)

    Article  PubMed  Google Scholar 

  17. Sinzobahamvya N, Wetter J, Blaschczok HC, Cho MY, Brecher AM, Urban AE (2001) The fate of small-diameter homografts in the pulmonary position. Ann Thorac Surg 72(6):2070–2076. https://doi.org/10.1016/s0003-4975(01)03178-2

    Article  CAS  PubMed  Google Scholar 

  18. Perron J, Moran AM, Gauvreau K, del Nido PJ, Mayer JE Jr, Jonas RA (1999) Valved homograft conduit repair of the right heart in early infancy. Ann Thorac Surg 68(2):542–548. https://doi.org/10.1016/s0003-4975(99)00614-1

    Article  CAS  PubMed  Google Scholar 

  19. Urban AE, Sinzobahamvya N, Brecher AM, Wetter J, Malorny S (1998) Truncus arteriosus: ten-year experience with homograft repair in neonates and infants. Ann Thorac Surg 66(6 Suppl):S183–S188. https://doi.org/10.1016/s0003-4975(98)01103-5

    Article  CAS  PubMed  Google Scholar 

  20. Hawkins JA, Bailey WW, Dillon T, Schwartz DC (1992) Midterm results with cryopreserved allograft valved conduits from the right ventricle to the pulmonary arteries. J Thorac Cardiovasc Surg 104(4):910–916

    Article  CAS  PubMed  Google Scholar 

  21. McGrath LB, Gonzalez-Lavin L, Graf D (1988) Pulmonary homograft implantation for ventricular outflow tract reconstruction: early phase results. Ann Thorac Surg 45(3):273–277. https://doi.org/10.1016/s0003-4975(10)62461-7

    Article  CAS  PubMed  Google Scholar 

  22. Gerestein CG, Takkenberg JJ, Oei FB et al (2001) Right ventricular outflow tract reconstruction with an allograft conduit. Ann Thorac Surg 71(3):911–917. https://doi.org/10.1016/s0003-4975(00)02440-1. (Discussion 917-918)

    Article  CAS  PubMed  Google Scholar 

  23. Bielefeld MR, Bishop DA, Campbell DN, Mitchell MB, Grover FL, Clarke DR (2001) Reoperative homograft right ventricular outflow tract reconstruction. Ann Thorac Surg 71(2):482–487. https://doi.org/10.1016/s0003-4975(00)02521-2. (Discussion 487-488)

    Article  CAS  PubMed  Google Scholar 

  24. Junnil P, Cheanvechai C, Namchaisiri J et al (2021) Long-term course after pediatric right ventricular outflow tract reconstruction. Asian Cardiovasc Thorac Ann 29(6):483–489. https://doi.org/10.1177/0218492320983449

    Article  CAS  PubMed  Google Scholar 

  25. Meyns B, Jashari R, Gewillig M et al (2005) Factors influencing the survival of cryopreserved homografts. The second homograft performs as well as the first. Eur J Cardiothorac Surg 28(2):211–216. https://doi.org/10.1016/j.ejcts.2005.03.041. (Discussion 216)

    Article  PubMed  Google Scholar 

  26. Dearani JA, Danielson GK, Puga FJ et al (2003) Late follow-up of 1095 patients undergoing operation for complex congenital heart disease utilizing pulmonary ventricle to pulmonary artery conduits. Ann Thorac Surg 75(2):399–410. https://doi.org/10.1016/s0003-4975(02)04547-2. (Discussion 410-411)

    Article  PubMed  Google Scholar 

  27. Mery CM, Guzman-Pruneda FA, De Leon LE et al (2016) Risk factors for development of endocarditis and reintervention in patients undergoing right ventricle to pulmonary artery valved conduit placement. J Thorac Cardiovasc Surg 151(2):432–439. https://doi.org/10.1016/j.jtcvs.2015.10.069

    Article  PubMed  Google Scholar 

  28. Herrmann JL, Larson EE, Mastropietro CW et al (2020) Right ventricular outflow tract reconstruction in infant truncus arteriosus: a 37-year experience. Ann Thorac Surg 110(2):630–637. https://doi.org/10.1016/j.athoracsur.2019.11.023

    Article  PubMed  Google Scholar 

  29. Saxena A, Salve GG, Betts K et al (2021) Outcomes following heterotopic placement of right ventricle to pulmonary artery conduits. World J Pediatr Congenit Heart Surg 12(2):220–229. https://doi.org/10.1177/2150135120975769

    Article  PubMed  Google Scholar 

  30. Selamet Tierney ES, Gersony WM, Altmann K et al (2005) Pulmonary position cryopreserved homografts: durability in pediatric Ross and non-Ross patients. J Thorac Cardiovasc Surg 130(2):282–286. https://doi.org/10.1016/j.jtcvs.2005.04.003

    Article  PubMed  Google Scholar 

  31. Wells WJ, Arroyo H Jr, Bremner RM, Wood J, Starnes VA (2002) Homograft conduit failure in infants is not due to somatic outgrowth. J Thorac Cardiovasc Surg 124(1):88–96. https://doi.org/10.1067/mtc.2002.121158

    Article  PubMed  Google Scholar 

  32. Christenson JT, Vala D, Sierra J, Beghetti M, Kalangos A (2004) Blood group incompatibility and accelerated homograft fibrocalcifications. J Thorac Cardiovasc Surg 127(1):242–250. https://doi.org/10.1016/j.jtcvs.2003.07.047

    Article  PubMed  Google Scholar 

  33. Sierra J, Christenson JT, Lahlaidi NH, Beghetti M, Kalangos A (2007) Right ventricular outflow tract reconstruction: what conduit to use? Homograft or Contegra? Ann Thorac Surg 84(2):606–610. https://doi.org/10.1016/j.athoracsur.2007.03.055. (Discussion 610-611)

    Article  PubMed  Google Scholar 

  34. Boethig D, Horke A, Hazekamp M et al (2019) A European study on decellularized homografts for pulmonary valve replacement: initial results from the prospective ESPOIR Trial and ESPOIR Registry datadagger. Eur J Cardiothorac Surg 56(3):503–509. https://doi.org/10.1093/ejcts/ezz054

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bibevski S, Ruzmetov M, Fortuna RS, Turrentine MW, Brown JW, Ohye RG (2017) Performance of SynerGraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data. Ann Thorac Surg 103(3):869–874. https://doi.org/10.1016/j.athoracsur.2016.07.068

    Article  PubMed  Google Scholar 

  36. Ruzmetov M, Shah JJ, Geiss DM, Fortuna RS (2012) Decellularized versus standard cryopreserved valve allografts for right ventricular outflow tract reconstruction: a single-institution comparison. J Thorac Cardiovasc Surg 143(3):543–549. https://doi.org/10.1016/j.jtcvs.2011.12.032

    Article  PubMed  Google Scholar 

  37. Chauvette V, Bouhout I, Tarabzoni M et al (2022) Pulmonary homograft dysfunction after the Ross procedure using decellularized homografts—a multicenter study. J Thorac Cardiovasc Surg 163(4):1296-1305 e3. https://doi.org/10.1016/j.jtcvs.2020.06.139

    Article  PubMed  Google Scholar 

  38. Protopapas AD, Athanasiou T (2008) Contegra conduit for reconstruction of the right ventricular outflow tract: a review of published early and mid-time results. J Cardiothorac Surg 3:62. https://doi.org/10.1186/1749-8090-3-62

    Article  PubMed  PubMed Central  Google Scholar 

  39. Falchetti A, Demanet H, Dessy H, Melot C, Pierrakos C, Wauthy P (2019) Contegra versus pulmonary homograft for right ventricular outflow tract reconstruction in newborns. Cardiol Young 29(4):505–510. https://doi.org/10.1017/S1047951119000143

    Article  PubMed  Google Scholar 

  40. Peivandi AD, Seiler M, Mueller KM et al (2019) Elastica degeneration and intimal hyperplasia lead to Contegra(R) conduit failure. Eur J Cardiothorac Surg 56(6):1154–1161. https://doi.org/10.1093/ejcts/ezz199

    Article  PubMed  Google Scholar 

  41. Shebani SO, McGuirk S, Baghai M et al (2006) Right ventricular outflow tract reconstruction using Contegra valved conduit: natural history and conduit performance under pressure. Eur J Cardiothorac Surg 29(3):397–405. https://doi.org/10.1016/j.ejcts.2005.11.040

    Article  PubMed  Google Scholar 

  42. Boethig D, Thies WR, Hecker H, Breymann T (2005) Mid term course after pediatric right ventricular outflow tract reconstruction: a comparison of homografts, porcine xenografts and Contegras. Eur J Cardiothorac Surg 27(1):58–66. https://doi.org/10.1016/j.ejcts.2004.09.009

    Article  PubMed  Google Scholar 

  43. Gober V, Berdat P, Pavlovic M, Pfammatter JP, Carrel TP (2005) Adverse mid-term outcome following RVOT reconstruction using the Contegra valved bovine jugular vein. Ann Thorac Surg 79(2):625–631. https://doi.org/10.1016/j.athoracsur.2004.07.085

    Article  PubMed  Google Scholar 

  44. Kadner A, Dave H, Stallmach T, Turina M, Pretre R (2004) Formation of a stenotic fibrotic membrane at the distal anastomosis of bovine jugular vein grafts (Contegra) after right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg 127(1):285–286. https://doi.org/10.1016/j.jtcvs.2003.08.031

    Article  PubMed  Google Scholar 

  45. Urso S, Rega F, Meuris B et al (2011) The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur J Cardiothorac Surg 40(3):603–609. https://doi.org/10.1016/j.ejcts.2010.11.081

    Article  PubMed  Google Scholar 

  46. Stammnitz C, Huscher D, Bauer UMM et al (2022) Nationwide registry-based analysis of infective endocarditis risk after pulmonary valve replacement. J Am Heart Assoc 11(5):e022231. https://doi.org/10.1161/JAHA.121.022231

    Article  PubMed  PubMed Central  Google Scholar 

  47. Konertz W, Dohmen PM, Liu J et al (2005) Hemodynamic characteristics of the Matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation. J Heart Valve Dis 14(1):78–81

    PubMed  Google Scholar 

  48. Christ T, Paun AC, Grubitzsch H, Holinski S, Falk V, Dushe S (2019) Long-term results after the Ross procedure with the decellularized AutoTissue Matrix P(R) bioprosthesis used for pulmonary valve replacement. Eur J Cardiothorac Surg 55(5):885–892. https://doi.org/10.1093/ejcts/ezy377

    Article  PubMed  Google Scholar 

  49. Ruffer A, Purbojo A, Cicha I et al (2010) Early failure of xenogenous de-cellularised pulmonary valve conduits—a word of caution! Eur J Cardiothorac Surg 38(1):78–85. https://doi.org/10.1016/j.ejcts.2010.01.044

    Article  PubMed  Google Scholar 

  50. Wang Y, Chen S, Shi J, Li G, Dong N (2016) Mid- to long-term outcome comparison of the Medtronic Hancock II and bi-leaflet mechanical aortic valve replacement in patients younger than 60 years of age: a propensity-matched analysis. Interact Cardiovasc Thorac Surg 22(3):280–286. https://doi.org/10.1093/icvts/ivv347

    Article  CAS  PubMed  Google Scholar 

  51. Senage T, Paul A, Le Tourneau T et al (2022) The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration. Nat Med 28(2):283–294. https://doi.org/10.1038/s41591-022-01682-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cooper DK (1992) Depletion of natural antibodies in non-human primates–a step towards successful discordant xenografting in humans. Clin Transplant 6(3 part 1):178–183

    CAS  PubMed  Google Scholar 

  53. Lai L, Kolber-Simonds D, Park KW et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295(5557):1089–1092. https://doi.org/10.1126/science.1068228

    Article  CAS  PubMed  Google Scholar 

  54. McGregor CG, Kogelberg H, Vlasin M, Byrne GW (2013) Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves. J Heart Valve Dis 22(3):383–390

    PubMed  Google Scholar 

  55. Manji RA, Ekser B, Menkis AH, Cooper DK (2014) Bioprosthetic heart valves of the future. Xenotransplantation 21(1):1–10. https://doi.org/10.1111/xen.12080

    Article  PubMed  PubMed Central  Google Scholar 

  56. Daly KA, Stewart-Akers AM, Hara H et al (2009) Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng Part A 15(12):3877–3888. https://doi.org/10.1089/ten.TEA.2009.0089

    Article  CAS  PubMed  Google Scholar 

  57. Griesemer AD, Hirakata A, Shimizu A et al (2009) Results of gal-knockout porcine thymokidney xenografts. Am J Transplant 9(12):2669–2678. https://doi.org/10.1111/j.1600-6143.2009.02849.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Groning M, Tahri NB, Sondergaard L, Helvind M, Ersboll MK, Orbaek AH (2019) Infective endocarditis in right ventricular outflow tract conduits: a register-based comparison of homografts, Contegra grafts and Melody transcatheter valves. Eur J Cardiothorac Surg 56(1):87–93. https://doi.org/10.1093/ejcts/ezy478

    Article  PubMed  Google Scholar 

  59. Van Dijck I, Budts W, Cools B et al (2015) Infective endocarditis of a transcatheter pulmonary valve in comparison with surgical implants. Heart 101(10):788–793. https://doi.org/10.1136/heartjnl-2014-306761

    Article  PubMed  Google Scholar 

  60. Haas NA, Bach S, Vcasna R et al (2018) The risk of bacterial endocarditis after percutaneous and surgical biological pulmonary valve implantation. Int J Cardiol 268:55–60. https://doi.org/10.1016/j.ijcard.2018.04.138

    Article  PubMed  Google Scholar 

  61. Gillespie MJ, McElhinney DB, Kreutzer J et al (2015) Transcatheter pulmonary valve replacement for right ventricular outflow tract conduit dysfunction after the ross procedure. Ann Thorac Surg 100(3):996–1002. https://doi.org/10.1016/j.athoracsur.2015.04.108. (Discussion 1002–1003)

    Article  PubMed  Google Scholar 

  62. Cabalka AK, Hellenbrand WE, Eicken A et al (2017) Relationships among conduit type, pre-stenting, and outcomes in patients undergoing transcatheter pulmonary valve replacement in the prospective north American and European melody valve trials. JACC Cardiovasc Interv 10(17):1746–1759. https://doi.org/10.1016/j.jcin.2017.05.022

    Article  PubMed  Google Scholar 

  63. Shinoka T, Breuer CK, Tanel RE et al (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60(6 Suppl):S513–S516. https://doi.org/10.1016/0003-4975(95)00733-4

    Article  CAS  PubMed  Google Scholar 

  64. Hoerstrup SP, Sodian R, Daebritz S et al (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102(19 Suppl 3):III44–III49. https://doi.org/10.1161/01.cir.102.suppl_3.iii-44

    Article  CAS  PubMed  Google Scholar 

  65. Emmert MY, Schmitt BA, Loerakker S et al (2018) Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan4587

    Article  PubMed  Google Scholar 

  66. Reimer J, Syedain Z, Haynie B, Lahti M, Berry J, Tranquillo R (2017) Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng 45(2):439–451. https://doi.org/10.1007/s10439-016-1605-7

    Article  PubMed  Google Scholar 

  67. Schmitt B, Spriestersbach H, OH-Ici D et al (2016) Percutaneous pulmonary valve replacement using completely tissue-engineered off-the-shelf heart valves: six-month in vivo functionality and matrix remodelling in sheep. EuroIntervention 12(1):62–70. https://doi.org/10.4244/EIJV12I1A12

    Article  PubMed  Google Scholar 

  68. Weber B, Dijkman PE, Scherman J et al (2013) Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34(30):7269–7280. https://doi.org/10.1016/j.biomaterials.2013.04.059

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt D, Dijkman PE, Driessen-Mol A et al (2010) Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56(6):510–520. https://doi.org/10.1016/j.jacc.2010.04.024

    Article  PubMed  Google Scholar 

  70. Driessen-Mol A, Emmert MY, Dijkman PE et al (2014) Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol 63(13):1320–1329. https://doi.org/10.1016/j.jacc.2013.09.082

    Article  PubMed  Google Scholar 

  71. Syedain Z, Reimer J, Schmidt J et al (2015) 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 73:175–184. https://doi.org/10.1016/j.biomaterials.2015.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharifulin R, Bogachev-Prokophiev A, Demin I et al (2018) Right ventricular outflow tract reconstruction using a polytetrafluoroethylene conduit in Ross patients. Eur J Cardiothorac Surg 54(3):427–433. https://doi.org/10.1093/ejcts/ezy128

    Article  PubMed  Google Scholar 

  73. Shinkawa T, Tang X, Gossett JM et al (2015) Valved polytetrafluoroethylene conduits for right ventricular outflow tract reconstruction. Ann Thorac Surg 100(1):129–137. https://doi.org/10.1016/j.athoracsur.2015.02.114. (Discussion 137)

    Article  PubMed  Google Scholar 

  74. Miyazaki T, Yamagishi M, Yamamoto Y et al (2019) Use of an expanded polytetrafluoroethylene valved patch with a sinus in right ventricular outflow tract reconstructiondagger. Eur J Cardiothorac Surg 56(4):671–678. https://doi.org/10.1093/ejcts/ezz089

    Article  PubMed  Google Scholar 

  75. Morales DL, Herrington C, Bacha EA et al (2020) A novel restorative pulmonary valve conduit: early outcomes of two clinical trials. Front Cardiovasc Med 7:583360. https://doi.org/10.3389/fcvm.2020.583360

    Article  PubMed  Google Scholar 

  76. Vitanova K, Cleuziou J, Horer J et al (2014) Which type of conduit to choose for right ventricular outflow tract reconstruction in patients below 1 year of age? Eur J Cardiothorac Surg 46(6):961–966. https://doi.org/10.1093/ejcts/ezu080. (Discussion 966)

    Article  PubMed  Google Scholar 

  77. Hickey EJ, McCrindle BW, Blackstone EH et al (2008) Jugular venous valved conduit (Contegra) matches allograft performance in infant truncus arteriosus repair. Eur J Cardiothorac Surg 33(5):890–898. https://doi.org/10.1016/j.ejcts.2007.12.052

    Article  PubMed  Google Scholar 

  78. Niemantsverdriet MB, Ottenkamp J, Gauvreau K, Del Nido PJ, Hazenkamp MG, Jenkins KJ (2008) Determinants of right ventricular outflow tract conduit longevity: a multinational analysis. Congenit Heart Dis 3(3):176–184. https://doi.org/10.1111/j.1747-0803.2008.00190.x

    Article  PubMed  Google Scholar 

  79. Fiore AC, Ruzmetov M, Huynh D et al (2010) Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothorac Surg 38(3):318–325. https://doi.org/10.1016/j.ejcts.2010.01.063

    Article  PubMed  Google Scholar 

  80. Ugaki S, Rutledge J, Al Aklabi M, Ross DB, Adatia I, Rebeyka IM (2015) An increased incidence of conduit endocarditis in patients receiving bovine jugular vein grafts compared to cryopreserved homograft for right ventricular outflow reconstruction. Ann Thorac Surg 99(1):140–146. https://doi.org/10.1016/j.athoracsur.2014.08.034

    Article  PubMed  Google Scholar 

  81. Razzouk AJ, Williams WG, Cleveland DC et al (1992) Surgical connections from ventricle to pulmonary artery. Comparison of four types of valved implants. Circulation 86(5 Suppl):II154–II158

    CAS  PubMed  Google Scholar 

  82. Albert JD, Bishop DA, Fullerton DA, Campbell DN, Clarke DR (1993) Conduit reconstruction of the right ventricular outflow tract. Lessons learned in a twelve-year experience. J Thorac Cardiovasc Surg 106(2):228–235 (Discussion 235–236)

    Article  CAS  PubMed  Google Scholar 

  83. Homann M, Haehnel JC, Mendler N et al (2000) Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur J Cardiothorac Surg 17(6):624–630. https://doi.org/10.1016/s1010-7940(00)00414-0

    Article  CAS  PubMed  Google Scholar 

  84. Lange R, Weipert J, Homann M et al (2001) Performance of allografts and xenografts for right ventricular outflow tract reconstruction. Ann Thorac Surg 71(5 Suppl):S365–S367. https://doi.org/10.1016/s0003-4975(01)02552-8

    Article  CAS  PubMed  Google Scholar 

  85. Ong K, Boone R, Gao M et al (2013) Right ventricle to pulmonary artery conduit reoperations in patients with tetralogy of fallot or pulmonary atresia associated with ventricular septal defect. Am J Cardiol 111(11):1638–1643. https://doi.org/10.1016/j.amjcard.2013.01.337

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health R01s HL163085 (G.F.) and HL143008 (R.J.L. and G.F.), T32 HL007854 (E.F., A.A.), the Thoracic Surgery Foundation Resident Research Award (S.S.), The Valley Hospital Foundation ‘Marjorie C Bunnel’ charitable fund (G.F.), Andrew Sabin Family Foundation Cardiovascular Research Laboratory (G.F.), and both Erin’s Fund and the William J Rashkind Endowment of the Children’s Hospital of Philadelphia (R.J.L.).

Funding

This work received support from Thoracic Surgery Foundation, Resident Research Award, National Institutes of Health (Grant Nos. T32 HL007854, R01 HL143008, R01 HL 163085).

Author information

Authors and Affiliations

Authors

Contributions

R.J.L. and G.F. acquired funding and conceptualized the original project. S.S conceptualized the review. S.S., E.F, R.J.L. and G.F wrote the manuscript. S.S., E.F, A.A, Y.X, E.W., N.V. conducted the literature review.

Corresponding author

Correspondence to Giovanni Ferrari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Faridmoayer, E., Vitale, N. et al. Valved Conduits for Right Ventricular Outflow Tract Reconstruction: A Review of Current Technologies and Future Directions. Pediatr Cardiol (2023). https://doi.org/10.1007/s00246-023-03346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00246-023-03346-z

keywords

Navigation