Skip to main content
Log in

Mitral Valve Abnormalities Associated with Single-Ventricle Palliation, Cardiac Death or Transplant in Fetuses with Postnatally Confirmed Coarctation of the Aorta

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Predicting if a fetus with borderline left heart structures and coarctation of the aorta (CoA) will require single ventricle palliation (SVP) is challenging, partly due to the limitations of fetal echocardiography in defining valvar abnormalities. Fetal echocardiographic findings predictive of SVP, particularly in relation to the mitral valve (MV), are not well defined. We performed a retrospective review of fetuses with postnatally confirmed CoA from 2010 to 2020. Fetuses with complex congenital heart disease or unequivocal hypoplastic left heart syndrome were excluded. Data were compared between those who underwent biventricular repair (BVR) versus SVP, cardiac death or orthotopic heart transplant (OHT) to determine differences in fetal echocardiograms. Of 67 fetuses with 131 total echocardiograms, 62 (93%) underwent BVR and 5 (7%) experienced SVP, cardiac death or OHT. Fetuses with confirmed CoA who experienced SVP, cardiac death, or OHT, had fetal MV z-scores that were 2.03 lower, on average, than those who underwent BVR (z-score =  − 3.98 vs. − 1.94, 95% CI − 2.93, − 1.13). The incidences of MV anomalies and left to right flow across the foramen ovale were higher in the SVP, cardiac death and OHT group. SVP, cardiac death or OHT in fetuses with confirmed CoA were associated with severe fetal MV hypoplasia, MV anomalies and left to right flow across the foramen ovale. These findings may help guide prenatal counseling about the likelihood of SVP, cardiac death or OHT in fetuses with CoA and borderline left heart structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buyens A, Gyselaers W, Coumans A et al (2012) Difficult prenatal diagnosis: fetal coarctation. Facts Views Vis ObGyn 4(4):230–236

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaplinski M, Cohen MS (2015) Characterising adequacy or inadequacy of the borderline left ventricle: What tools can we use? Cardiol Young 25(8):1482–1488. https://doi.org/10.1017/S1047951115002267

    Article  PubMed  Google Scholar 

  3. Jantzen DW, Gelehrter SK, Yu S, Donohue JE, Fifer CG (2015) Echocardiographic factors discriminating biventricular versus univentricular approach in the foetus with borderline left ventricle. Cardiol Young 25(5):941–950. https://doi.org/10.1017/S1047951114001449

    Article  PubMed  Google Scholar 

  4. Weber RW, Ayala-Arnez R, Atiyah M et al (2013) Foetal echocardiographic assessment of borderline small left ventricles can predict the need for postnatal intervention. Cardiol Young 23(1):99–107. https://doi.org/10.1017/S1047951112000467

    Article  PubMed  Google Scholar 

  5. Haberer K, Fruitman D, Power A, Hornberger LK, Eckersley L (2021) Fetal echocardiographic predictors of biventricular circulation in hypoplastic left heart complex. Ultrasound Obstet Gynecol 58(3):405–410. https://doi.org/10.1002/uog.23558

    Article  CAS  PubMed  Google Scholar 

  6. Edwards LA, Arunamata A, Maskatia SA et al (2019) Fetal echocardiographic parameters and surgical outcomes in congenital left-sided cardiac lesions. Pediatr Cardiol 40(6):1304–1313. https://doi.org/10.1007/s00246-019-02155-7

    Article  PubMed  Google Scholar 

  7. Colquitt JL, Loar RW, Bolin EH, Ezon DS, Heinle JS, Morris SA (2022) Left heart hypoplasia in the fetus: echocardiographic predictors of outcome. Prenat Diagn 42(4):447–460. https://doi.org/10.1002/pd.6101

    Article  PubMed  Google Scholar 

  8. Viaux-Savelon S, Dommergues M, Rosenblum O et al (2012) Prenatal ultrasound screening: false positive soft markers may alter maternal representations and mother–infant interaction. PLoS ONE 7(1):e30935. https://doi.org/10.1371/journal.pone.0030935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parameter(z). Accessed June 13, 2023. http://parameterz.blogspot.com/

  10. R Workflow—13 Manipulation of Longitudinal Data. Accessed June 7, 2023. https://hbiostat.org/rflow/long.html#sec-long-interp

  11. Toole BJ, Schlosser B, McCracken CE, Stauffer N, Border WL, Sachdeva R (2016) Importance of relationship between ductus and isthmus in fetal diagnosis of coarctation of aorta. Echocardiography 33(5):771–777. https://doi.org/10.1111/echo.13140

    Article  PubMed  Google Scholar 

  12. Kailin JA, Santos AB, Yilmaz Furtun B, Sexson Tejtel SK, Lantin-Hermoso R (2017) Isolated coarctation of the aorta in the fetus: a diagnostic challenge. Echocardiography 34(12):1768–1775. https://doi.org/10.1111/echo.13578

    Article  PubMed  Google Scholar 

  13. Quartermain MD, Cohen MS, Dominguez TE, Tian Z, Donaghue DD, Rychik J (2009) Left ventricle to right ventricle size discrepancy in the fetus: the presence of critical congenital heart disease can be reliably predicted. J Am Soc Echocardiogr 22(11):1296–1301. https://doi.org/10.1016/j.echo.2009.08.008

    Article  PubMed  Google Scholar 

  14. Jowett V, Aparicio P, Santhakumaran S, Seale A, Jicinska H, Gardiner HM (2012) Sonographic predictors of surgery in fetal coarctation of the aorta: sonographic predictors of fetal CoA. Ultrasound Obstet Gynecol 40(1):47–54. https://doi.org/10.1002/uog.11161

    Article  CAS  PubMed  Google Scholar 

  15. Fricke K, Liuba P, Weismann CG (2021) Fetal echocardiographic dimension indices: important predictors of postnatal coarctation. Pediatr Cardiol 42(3):517–525. https://doi.org/10.1007/s00246-020-02509-6

    Article  PubMed  Google Scholar 

  16. Conte S, Lacour-Gayet F, Serraf A et al (1995) Surgical management of neonatal coarctation. J Thorac Cardiovasc Surg 109(4):663–675. https://doi.org/10.1016/S0022-5223(95)70347-0

    Article  CAS  PubMed  Google Scholar 

  17. Feinstein JA, Benson DW, Dubin AM et al (2012) Hypoplastic left heart syndrome. J Am Coll Cardiol 59(11):S1–S42. https://doi.org/10.1016/j.jacc.2011.09.022

  18. Sharland GK, Chita SK, Fagg NL et al (1991) Left ventricular dysfunction in the fetus: relation to aortic valve anomalies and endocardial fibroelastosis. Heart 66(6):419–424. https://doi.org/10.1136/hrt.66.6.419

    Article  CAS  Google Scholar 

  19. McCaffrey FM, Sherman FS (1997) Prenatal diagnosis of severe aortic stenosis. Pediatr Cardiol 18(4):276–281. https://doi.org/10.1007/s002469900174

    Article  CAS  PubMed  Google Scholar 

  20. Axt-Fliedner R, Kreiselmaier P, Schwarze A, Krapp M, Gembruch U (2006) Development of hypoplastic left heart syndrome after diagnosis of aortic stenosis in the first trimester by early echocardiography. Ultrasound Obstet Gynecol 28(1):106–109. https://doi.org/10.1002/uog.2824

    Article  CAS  PubMed  Google Scholar 

  21. Allan LD, Sharland G, Tynan MJ (1989) The natural history of the hypoplastic left heart syndrome. Int J Cardiol 25(3):341–343. https://doi.org/10.1016/0167-5273(89)90226-X

    Article  CAS  PubMed  Google Scholar 

  22. Walsh MJ, Verghese GR, Ferguson ME et al (2017) Counseling practices for fetal hypoplastic left heart syndrome. Pediatr Cardiol 38(5):946–958. https://doi.org/10.1007/s00246-017-1601-1

    Article  PubMed  Google Scholar 

  23. Luo JL, Zhao BW, Pan M et al (2020) z-scores of early diastolic blood flow widths of mitral and tricuspid valves in normal fetuses and fetuses with dilated coronary sinus. J Matern Fetal Neonatal Med 33(9):1579–1586. https://doi.org/10.1080/14767058.2018.1523894

    Article  PubMed  Google Scholar 

  24. Gu X, Zhu H, Zhang Y et al (2019) Quantile score: a new reference system for quantitative fetal echocardiography based on a large multicenter study. J Am Soc Echocardiogr 32(2):296-302.e5. https://doi.org/10.1016/j.echo.2018.09.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Daniel L. Saurers RDCS.

Funding

Supported in part by the Vanderbilt CTSA Grant UL1TR002243 from NCATS/NIH.

Author information

Authors and Affiliations

Authors

Contributions

A.F. and S.K. wrote the main manuscript and prepared all figures. A.K. and J.S. provided substantial contributions to the conception and design of the work. A.K. and J.S. also revised the work critically for important intellectual content. All authors reviewed the final manuscript to be published. D.S. is acknowledged for assistance in data collection.

Corresponding author

Correspondence to Alex J. Foy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose or other conflicts of interest to declare that are relevant to the content of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foy, A.J., Soslow, J.H., Kavanaugh-McHugh, A.L. et al. Mitral Valve Abnormalities Associated with Single-Ventricle Palliation, Cardiac Death or Transplant in Fetuses with Postnatally Confirmed Coarctation of the Aorta. Pediatr Cardiol (2023). https://doi.org/10.1007/s00246-023-03335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00246-023-03335-2

Keywords

Navigation