Skip to main content
Log in

Assessing Single Ventricle Function in the Fontan Circulation using Wave Intensity Analysis

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Single ventricle hearts palliated with the Fontan operation present complications later in life as a result of increased venous pressures and abnormal ventricle function. Wave intensity analysis uses measurements of blood velocity and pressure to represent arterial hemodynamics as summations of energy waves. This methodology could potentially be a useful tool in assessment of Fontan patients. The clinical value of wave intensity parameters was utilized to evaluate the functional performance of the single ventricle in Fontan patients. A retrospective analysis of invasive hemodynamic data was retrospectively obtained from routine cardiac catheterization of patients with Fontan circulation (n = 20) and comparison to those with biventricular circulation (n = 10) who presented to the catheterization laboratory for closure of small patent ductus arteriosus (PDAs). Wave intensity analysis and wave energy flux was calculated using aortic pressure waveforms and echocardiography aortic Doppler measurements as previously described. Significant differences were seen in the peak forward compression wave (p = 0.013), early systolic energy flux (p = 0.005) and the systolic and diastolic ratio (p = 0.006) in Fontan patients versus controls. Within the Fontan group, there was a positive correlation (0.54, p = 0.02) between the wave speed and pulmonary vascular resistance. Early systolic energy flux was a potential individual indicator of a Fontan patients heart failure classification (AUC = 0.71). Wave intensity analysis could be a useful tool in screening Fontan patients and predicting clinical outcomes and Fontan failure. Future prospective analyses of Fontan hemodynamics and WIA are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun YH, Anderson TJ, Parker KH, Tyberg JV (2000) Wave-intensity analysis: a new approach to coronary hemodynamics. J Appl Physiol (1985) 89(4):1636–1644. https://doi.org/10.1152/jappl.2000.89.4.1636

    Article  CAS  Google Scholar 

  2. Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47(2):197–206. https://doi.org/10.1007/s11517-008-0388-x

    Article  PubMed  Google Scholar 

  3. Sen S, Petraco R, Mayet J, Davies J (2014) Wave intensity analysis in the human coronary circulation in health and disease. Curr Cardiol Rev 10(1):17–23

    Article  Google Scholar 

  4. Broyd CJ, Davies JE, Escaned JE, Hughes A (2017) Parker K (2017) Wave intensity analysis and its application to the coronary circulation. Glob Cardiol Sci Pract 2017(1):e201705

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ntsinjana HN, Chung R, Ciliberti P, Muthurangu V, Schievano S, Marek J et al (2017) Utility of cardiovascular magnetic resonance-derived wave intensity analysis as a marker of ventricular function in children with heart failure and normal ejection fraction. Front Pediatr 5:65. https://doi.org/10.3389/fped.2017.00065

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hametner B, Parragh S, Weber T, Wassertheurer S (2017) Wave intensity of aortic root pressure as diagnostic marker of left ventricular systolic dysfunction. PLoS ONE 12(6):e0179938. https://doi.org/10.1371/journal.pone.0179938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Z, Jalali F, Sun YH, Wang JJ, Parker KH, Tyberg JV (2005) Assessment of left ventricular diastolic suction in dogs using wave-intensity analysis. Am J Physiol Heart Circ Physiol 288(4):H1641–H1651. https://doi.org/10.1152/ajpheart.00181.2004

    Article  CAS  PubMed  Google Scholar 

  8. Sun Y, Belenkie I, Wang JJ, Tyberg JV (2006) Assessment of right ventricular diastolic suction in dogs with the use of wave intensity analysis. Am J Physiol Heart Circ Physiol 291(6):H3114–H3121. https://doi.org/10.1152/ajpheart.00853.2005

    Article  CAS  PubMed  Google Scholar 

  9. Tariq A, Cherukumalli N, Vadde N, Akers S, Dunde A, Bhuva R et al (2015) Wave intensity patterns in the aorta are associated with diastolic function in older adults. J Am Soc Hypertens 9(4):e9. https://doi.org/10.1016/j.jash.2015.03.026

    Article  Google Scholar 

  10. Parker KH (2009) An introduction to wave intensity analysis. Med Biol Eng Compu 47(2):175. https://doi.org/10.1007/s11517-009-0439-y

    Article  Google Scholar 

  11. Saiki H, Kurishima C, Masutani S, Senzaki H (2014) Cerebral circulation in patients with Fontan circulation: assessment by carotid arterial wave intensity and stiffness. Ann Thorac Surg 97(4):1394–1399. https://doi.org/10.1016/j.athoracsur.2013.10.079

    Article  PubMed  Google Scholar 

  12. Biglino G, Schievano S, Steeden JA, Ntsinjana H, Baker C, Khambadkone S et al (2012) Reduced ascending aorta distensibility relates to adverse ventricular mechanics in patients with hypoplastic left heart syndrome: noninvasive study using wave intensity analysis. J Thorac Cardiovasc Surg 144(6):1307–1313; discussion 13–14. https://doi.org/10.1016/j.jtcvs.2012.08.028.

  13. Biglino G, Giardini A, Ntsinjana HN, Schievano S, Hsia TY, Taylor AM (2014) Ventriculoarterial coupling in palliated hypoplastic left heart syndrome: Noninvasive assessment of the effects of surgical arch reconstruction and shunt type. J Thorac Cardiovasc Surg 148(4):1526–1533. https://doi.org/10.1016/j.jtcvs.2014.02.012

    Article  PubMed  Google Scholar 

  14. Honda T, Itatani K, Takanashi M, Kitagawa A, Ando H, Kimura S et al (2016) Contributions of respiration and heartbeat to the pulmonary blood flow in the Fontan circulation. Ann Thorac Surg 102(5):1596–1606. https://doi.org/10.1016/j.athoracsur.2016.03.101

    Article  PubMed  Google Scholar 

  15. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236. https://doi.org/10.1109/tbme.1985.325532

    Article  CAS  PubMed  Google Scholar 

  16. Sedghamiz H (2018) Complete Pan Tompkins Implementation ECG QRS detector. MATLAB Central File Exchange2018

  17. Cardillo G (2009) MWWTEST. GitHub2018

  18. BenSaïda A (2007) Shapiro–Wilk and Shapiro–Francia normality tests. MATLAB Central File Exchange2014

  19. Gewillig M, Brown SC (2016) The Fontan circulation after 45 years: update in physiology. Heart 102(14):1081–1086

    Article  Google Scholar 

  20. Penny DJ, Mynard JP, Smolich JJ (2008) Aortic wave intensity analysis of ventricular-vascular interaction during incremental dobutamine infusion in adult sheep. Am J Physiol Heart Circ Physiol 294(1):H481–H489. https://doi.org/10.1152/ajpheart.00962.2006

    Article  CAS  PubMed  Google Scholar 

  21. Jones CJ, Sugawara M, Kondoh Y, Uchida K, Parker KH (2002) Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis. Heart Vessels 16(3):91–98

    Article  Google Scholar 

  22. Saiki H, Eidem BW, Ohtani T, Grogan MA, Redfield MM (2016) Ventricular-arterial function and coupling in the adult Fontan circulation. J Am Heart Assoc. 5(9):e003887. https://doi.org/10.1161/jaha.116.003887

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheung YF, Penny DJ, Redington AN (2000) Serial assessment of left ventricular diastolic function after Fontan procedure. Heart 83(4):420–424

    Article  CAS  Google Scholar 

  24. Margossian R, Sleeper LA, Pearson GD, Barker PC, Mertens L, Quartermain MD et al (2016) Assessment of diastolic function in single-ventricle patients after the Fontan procedure. J Am Soc Echocardiogr 29(11):1066–1073. https://doi.org/10.1016/j.echo.2016.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sugawara M, Uchida K, Kondoh Y, Magosaki N, Niki K, Jones CJ et al (1997) Aortic blood momentum—the more the better for the ejecting heart in vivo? Cardiovasc Res 33(2):433–446

    Article  CAS  Google Scholar 

  26. Penny DJ, Rigby ML, Redington AN (1991) Abnormal patterns of intraventricular flow and diastolic filling after the Fontan operation: evidence for incoordinate ventricular wall motion. Br Heart J 66(5):375–378. https://doi.org/10.1136/hrt.66.5.375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Border WL, Syed AU, Michelfelder EC, Khoury P, Uzark KC, Manning PB et al (2003) Impaired systemic ventricular relaxation affects postoperative short-term outcome in Fontan patients. J Thorac Cardiovasc Surg 126(6):1760–1764. https://doi.org/10.1016/j.jtcvs.2003.06.006

    Article  PubMed  Google Scholar 

  28. Curtis SL, Zambanini A, Mayet J, Mc GTSA, Foale R, Parker KH et al (2007) Reduced systolic wave generation and increased peripheral wave reflection in chronic heart failure. Am J Physiol Heart Circ Physiol 293(1):H557–H562. https://doi.org/10.1152/ajpheart.01095.2006

    Article  CAS  PubMed  Google Scholar 

  29. Niiranen Teemu J, Kalesan B, Mitchell Gary F, Vasan RS (2019) Relative contributions of pulse pressure and arterial stiffness to cardiovascular disease. Hypertension 73(3):712–717. https://doi.org/10.1161/HYPERTENSIONAHA.118.12289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alastruey J, Hunt AAE, Weinberg PD (2014) Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections. Int J Numer Methods Biomed Eng 30(2):249–279. https://doi.org/10.1002/cnm.2602

    Article  Google Scholar 

  31. Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS et al (2006) Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Physiol Heart Circ Physiol 290(2):H878–H885. https://doi.org/10.1152/ajpheart.00751.2005

    Article  CAS  PubMed  Google Scholar 

  32. Tomkiewicz-Pajak L, Dziedzic-Oleksy H, Pajak J, Olszowska M, Kolcz J, Komar M et al (2014) Arterial stiffness in adult patients after Fontan procedure. Cardiovasc Ultrasound 12:15. https://doi.org/10.1186/1476-7120-12-15

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schmitt B, Steendijk P, Ovroutski S, Lunze K, Rahmanzadeh P, Maarouf N et al (2010) Pulmonary vascular resistance, collateral flow, and ventricular function in patients with a Fontan circulation at rest and during dobutamine stress. Circ Cardiovasc Imaging 3(5):623–631. https://doi.org/10.1161/circimaging.109.931592

    Article  PubMed  Google Scholar 

  34. Ridderbos FJ, Wolff D, Timmer A, van Melle JP, Ebels T, Dickinson MG et al (2015) Adverse pulmonary vascular remodeling in the Fontan circulation. J Heart Lung Transplant 34(3):404–413. https://doi.org/10.1016/j.healun.2015.01.005

    Article  PubMed  Google Scholar 

  35. De Vadder K, Van De Bruaene A, Gewillig M, Meyns B, Troost E, Budts W (2014) Predicting outcome after Fontan palliation: a single-centre experience, using simple clinical variables. Acta Cardiol 69(1):7–14. https://doi.org/10.1080/ac.69.1.3011339

    Article  PubMed  Google Scholar 

  36. Egbe Alexander C, Connolly Heidi M, Miranda William R, Ammash Naser M, Hagler Donald J, Veldtman Gruschen R et al (2017) Hemodynamics of Fontan failure. Circ Heart Fail 10(12):e004515. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004515

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Valdovinos.

Ethics declarations

Conflict of Interest

The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdovinos, J., Eng, N., Russell, M. et al. Assessing Single Ventricle Function in the Fontan Circulation using Wave Intensity Analysis. Pediatr Cardiol 42, 804–813 (2021). https://doi.org/10.1007/s00246-021-02544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-021-02544-x

Keywords

Navigation