Skip to main content

Advertisement

Log in

Reduction in Radiation Dose in a Pediatric Cardiac Catheterization Lab Using the Philips AlluraClarity X-ray System

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The objective of this study was to compare radiation doses and imaging quality using Philips AlluraClarity (Philips Healthcare, Best, The Netherlands) X-ray system and an older generation reference system. AlluraClarity is a new generation fluoroscopy system designed to reduce radiation without compromising image quality, but reports of its use in pediatric patients are limited. Dose area products (DAP, mGy cm2) and DAP/kg were compared in patients catheterized using Allura Xper and AlluraClarity systems over a year of use for each. Randomly selected studies from each system were assessed for image quality. The 430 patients imaged with Clarity were larger than the 332 imaged with Xper (median BSA: 0.74 vs. 0.64 m2, p = 0.06), and median total fluoroscopic times (TFT) were similar (15.8 vs. 16.1 min, p = 0.37). Median DAPs were 8661 mGy cm2 (IQR: 18,300 mGy cm2) and 4523 mGy cm2 (IQR: 11,596 mGy cm2) with Xper and Clarity, respectively (p < 0.001). There was a reduction in median DAP in all procedure categories. After adjustment for BSA, TFT, and procedure type, using Clarity was associated with a 57.5% (95% CI 51.5–62.8%, p < 0.001) reduction in DAP for all procedures. Reductions did not significantly differ by weight (<10 kg, 10–40 kg, ≥ 40 kg). There was an adjusted percent reduction in DAP for each procedure category ranging from 39.0% (95% CI 25.6–50.1%, p < 0.001) for cardiac biopsies with or without coronary angiography to 67.6% (95% CI 61.2–72.8%, p < 0.001) for device occlusions. Mean overall imaging quality scores (4.3 ± 0.8 with Clarity vs. 4.4 ± 0.6 with Xper, p = 0.62) and scores based on specific quality parameters were similar in the two groups. Use of AlluraClarity substantially reduced radiation doses compared to the older generation reference system without compromising imaging quality in a pediatric cardiac catheterization lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RADI:

Radiation physics/dosimetry

CONP:

Congenital heart disease, pediatrics

EPI:

Epidemiology

IAF:

Imaging, angiographic/fluoroscopic

References

  1. Justino H (2006) The ALARA concept in pediatric cardiac catheterization: techniques and tactics for managing radiation dose. Pediatr Radiol 36(Suppl. 2):146–153. doi:10.1007/s00247-006-0194-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Strauss KJ (2006) Pediatric interventional radiography equipment: safety considerations. Pediatr Radiol 36(Suppl 2):126–135. doi:10.1007/s00247-006-0220-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2008 Report to the General Assembly, United Nations, New York (2010). http://www.unscear.org/unscear/en/publications/2008_1.htmlAccessed 19 Sept 2016

  4. Modan B, Keinan L, Blumstein T, Sadetzki S (2000) Cancer following cardiac catheterization in childhood. Int J Epidemiol 29:424–428. PMID: 10869313

    Article  CAS  PubMed  Google Scholar 

  5. Lee YS, Chen YT, Jeng MJ, Tsao PC, Yen HJ, Lee PC, Li SY, Liu CJ, Chen TJ, Chou P, Soong WJ (2015) The risk of cancer in patients with congenital heart disease: a nationwide population-based cohort study in Taiwan. PLoS ONE 10:e0116844. doi:10.1371/journal.pone.0116844

    Article  PubMed  PubMed Central  Google Scholar 

  6. BEIR VII: Health risks from exposure to low levels of ionizing radiation. The National Academies. http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/beir_vii_final.pdf

  7. Christopoulos G, Christakopoulos GE, Rangan BV, Layne R, Grabarkewitz R, Haagen D, Latif F, Abu-Fadel M, Banerjee S, Brilakis ES (2015) Comparison of radiation dose between different fluoroscopy systems in the modern catheterization laboratory: Results from bench testing using an anthropomorphic phantom. Catheter Cardiovasc Interv 86:927–932. doi:10.1002/ccd.26007

    Article  PubMed  Google Scholar 

  8. Söderman M, Mauti M, Boon S, Omar A, Marteinsdóttir M, Andersson T, Holmin S, Hoornaert B (2013) Radiation dose in neuroangiography using image noise reduction technology: a population study based on 614 patients. Neuroradiology 55:1365–1372. doi:10.1007/s00234-013-1276-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kirkwood ML, Guild JB, Arbique GM, Tsai S, Modrall JG, Anderson JA, Rectenwald J, Timaran C (2016) New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures. J Vasc Surg 64:1357–1365. doi:10.1016/j.jvs.2016.04.062

    Article  PubMed  Google Scholar 

  10. Eloot L, Thierens H, Taeymans Y, Drieghe B, De Pooter J, Van Peteghem S, Buytaert D, Gijs T, Lapere R, Bacher K (2015) Novel X-ray imaging technology enables significant patient dose reduction in interventional cardiology while maintaining diagnostic image quality. Catheter Cardiovasc Interv 86:E205–E212. doi:10.1002/ccd.25913

    Article  PubMed  Google Scholar 

  11. Kastrati M, Langenbrink L, Piatkowski M, Michaelsen J, Reimann D, Hoffmann R (2016) Reducing radiation dose in coronary angiography and angioplasty using image noise reduction technology. Am J Cardiol 118:353–356. doi:10.1016/j.amjcard.2016.05.011

    Article  PubMed  Google Scholar 

  12. Haas NA, Happela CM, Mautib M, Sahyounb C, Tebarta LZ, Kececioglua D, Lasera KT (2015) Substantial radiation reduction in pediatric and adult congenital heart disease interventions with a novel X-ray imaging technology. IJC Heart Vasculature 6:101–109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dekker LR, van der Voort PH, Simmers TA, Verbeek XA, Bullens RW, Veer MV, Brands PJ, Meijer A (2013) New image processing and noise reduction technology allows reduction of radiation exposure in complex electrophysiologic interventions while maintaining optimal image quality: a randomized clinical trial. Heart Rhythm 10:1678–1682. doi:10.1016/j.hrthm.2013.08.018

    Article  PubMed  Google Scholar 

  14. Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (2012) Regression methods in biostatistics: linear, logistic, survival, and repeated measures models. Springer, New York, p 126

    Book  Google Scholar 

  15. Soderman M, Holmin S, Andersson T, Palmgren C, Babic D, Hoornaert B (2013) Image noise reduction algorithm for digital subtraction angiography: clinical results. Radiology 269:553–560. doi:10.1148/radiol.13121262

    Article  PubMed  Google Scholar 

  16. Onnasch DGW, Schroder FK, Fischer G, Kramer HH (2007) Diagnostic reference levels and effective dose in paediatric cardiac catheterization. Br J Radiol 80:177–185. doi:10.1259/bjr/19929794

    Article  CAS  PubMed  Google Scholar 

  17. Sawdy JM, Kempton TM, Olshove V, Gocha M, Chisolm JL, Hill SL, Kirk A, Cheatham JP, Holzer RJ (2011) Use of a dose-dependent follow-up protocol and mechanisms to reduce patients and staff radiation exposure in congenital and structural interventions. Catheter Cardiovasc Interv 78:136–142. doi:10.1002/ccd.23008

    Article  PubMed  Google Scholar 

  18. Verghese GR, McElhinney DB, Strauss KJ, Bergersen L (2012) Characterization of radiation exposure and effect of a radiation monitoring policy in a large volume pediatric cardiac catheterization lab. Catheter Cardiovasc Interv 79:294–301. doi:10.1002/ccd.23118

    Article  PubMed  Google Scholar 

  19. Glatz AC, Patel A, Zhu X, Dori Y, Hanna BD, Gillespie MJ, Rome JJ (2014) Patient radiation exposure in a modern, large-volume, pediatric cardiac catheterization laboratory. Pediatr Cardiol 35:870–878. doi:10.1007/s00246-014-0869-7

    Article  PubMed  Google Scholar 

  20. Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154:178–186. PMID: 10931690

    Article  CAS  PubMed  Google Scholar 

  21. Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K (2012) Studies of the mortality of atomic bomb survivors. Report 12, Part 1. Cancer: 1950–1990. 1996. Radiat Res 146:1–27. PMID: 22870980

    Article  Google Scholar 

  22. Preston DL, Pierce DA, Shimizu Y, Ron E, Mabuchi K (2003) Dose response and temporal patterns of radiation-associated solid cancer risks. Health Phys 85:43–46. PMID: 12852470

    Article  CAS  PubMed  Google Scholar 

  23. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360. PMID: 23694687

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kirpalani H, Nahmias C (2008) Radiation risk to children from computed tomography. Pediatrics 121:449–450. doi:10.1542/peds.2007-3394

    Article  PubMed  Google Scholar 

  25. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505. doi:10.1016/S0140-6736(12)60815-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Watson TG, Mah E, Joseph Schoepf U, King L, Huda W, Hlavacek AM (2013) Effective radiation dose in computed tomographic angiography of the chest and diagnostic cardiac catheterization in pediatric patients. Pediatr Cardiol 34:518–524. doi:10.1007/s00246-012-0486-2

    Article  PubMed  Google Scholar 

  27. Spengler RF, Cook DH, Clarke EA, Olley PM, Newman AM (1983) Cancer mortality following cardiac catheterization: a preliminary follow-up study on 4891 irradiated children. Pediatrics 71:235–239. PMID: 6823426

    CAS  PubMed  Google Scholar 

  28. McLaughlin JR, Kreiger N, Sloan MP, Benson LN, Hilditch S, Clarke EA (1993) An historical cohort study of cardiac catheterization during childhood and the risk of cancer. Int J Epidemiol 22:584–591. PMID: 8225729

    Article  CAS  PubMed  Google Scholar 

  29. Johnson JN, Hornik CP, Li JS, Benjamin DK, Yoshizumi TT, Reiman RE, Frush DP, Hill KD (2014) Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation 130:161–167

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Children’s Hospital Los Angeles Heart Ambassadors and the Hearst Foundation.

Funding

No funding was used specifically for this project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Sullivan.

Ethics declarations

Conflicts of interest

None of the authors have any conflicts of interest relevant to the contents of this manuscript to disclose.

Ethical Approval

Research practices for this project were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was not required since this project was performed retrospectively on a deidentified database, as reviewed and approved by our Institutional Review Board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, P.M., Harrison, D., Badran, S. et al. Reduction in Radiation Dose in a Pediatric Cardiac Catheterization Lab Using the Philips AlluraClarity X-ray System. Pediatr Cardiol 38, 1583–1591 (2017). https://doi.org/10.1007/s00246-017-1700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-017-1700-z

Keywords

Navigation