Skip to main content
Log in

Effective Radiation Dose in Computed Tomographic Angiography of the Chest and Diagnostic Cardiac Catheterization in Pediatric Patients

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Computed tomographic angiography (CTA) and cardiac catheterization are useful adjuncts to echocardiography for delineating cardiovascular anatomy in pediatric patients. These studies require ionizing radiation, and it is paramount to understand the amount of radiation pediatric patients receive when these tests are performed. Modern dosimetry methods facilitate the conversion of radiation doses of varying units into an effective radiation dose. To compare the effective radiation dose between nongated CTA of the chest and diagnostic cardiac catheterization in pediatric patients. This is a retrospective cohort study of patients of patients who underwent either nongated CTA of the chest or diagnostic cardiac catheterization between July 2009 and April 2010. Fifty patients were included in each group as consecutive samples at a single tertiary care center. An effective radiation dose (mSv) was formulated using conversion factors for each group. The median effective dose (ED) for the CTA group was 0.74 mSv compared with 10.8 mSv for the catheterization group (p < 0.0001). The median ED for children <1 year of age in the CTA group was 0.76 mSv compared with 13.4 mSv for the catheterization group (p < 0.0001). Nongated CTA of the chest exposes children to 15 times less radiation than diagnostic cardiac catheterization. Unless hemodynamic data are necessary, CTA of the chest should be considered in lieu of diagnostic cardiac catheterization in patients with known or presumed cardiac disease who need additional imaging beyond echocardiography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTA:

Computed tomographic angiography

ED:

Effective dose

DLP:

Dose length product

CTDIvol:

Volume CT dose index

CFw :

Weighted conversion factors

mSv:

Millisievert

MRI:

Magnetic Resonance Imaging

KAP:

Kerma area product

References

  1. Ait-Ali L, Andreassi MG, Foffa I, Spadoni I, Vano E, Picano E (2010) Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart 96(4):269–274

    Article  PubMed  Google Scholar 

  2. Al-Mousily F, Shifrin RY, Fricker FJ, Feranec N, Quinn NS, Chandran A (2011) Use of 320-detector computed tomographic angiography for infants and young children with congenital heart disease. Pediatr Cardiol 32(4):426–432

    Article  PubMed  Google Scholar 

  3. American Academy of Pediatrics. Committee on Environmental Health (1998) Risk of ionizing radiation exposure to children: a subject review. Pediatrics 101(4 Pt 1):717–719

    Article  Google Scholar 

  4. Bardo DM, Asamato J, Mackay CS, Minette M (2009) Low-dose coronary artery computed tomography angiogram of an infant with tetralogy of Fallot using a 256-slice multidetector computed tomography scanner. Pediatr Cardiol 30(6):824–826

    Article  PubMed  Google Scholar 

  5. Bean MJ, Pannu H, Fishman EK (2005) Three-dimensional computed tomographic imaging of complex congenital cardiovascular abnormalities. J Comp Assist Tomogr 29(6):721–724

    Article  Google Scholar 

  6. Bean MJ, Pannu H, Fishman EK (2005) Three-dimensional computed tomographic imaging of complex congenital cardiovascular abnormalities. J Comput Assist Tomogr 29(6):721–724

    Article  PubMed  Google Scholar 

  7. Belanger B, Boudry J (2006) Management of pediatric radiation dose using GE fluoroscopic equipment. Pediatr Radiol 36(2):204–211

    Article  PubMed  Google Scholar 

  8. Ben Sadd M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39(7):668–676

    Article  Google Scholar 

  9. Chan FP (2005) MR and CT imaging of the pediatric patient with structural heart disease. Semin Thorac Cardiovascr Surg 99–105

  10. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257(1):158–166

    Article  PubMed  Google Scholar 

  11. Ellis AR, Mulvihill D, Bradley SM, Hlavacek AM (2010) Utility of computed tomographic angiography in the pre-operative planning for initial and repeat congenital cardiovascular surgery. Cardiol Young 20(3):262–268

    Article  PubMed  Google Scholar 

  12. Friedman BA, Schoepf UJ, Bastarrika GA, Hlavacek AM (2005) Computed tomographic angiography of infants with congenital heart disease receiving extracorporeal membrane oxygenation. Pediatr Cardiol 30(8):1154–1156

    Article  Google Scholar 

  13. Furlow B (2011) Radiation protection in pediatric imaging. Radiol Technol 82(5):421–439

    PubMed  Google Scholar 

  14. Glatz AC et al (2010) Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. JACC Cardiovasc Imaging 3(11):1149–1157

    Article  PubMed  Google Scholar 

  15. Glöckler M, Koch A, Greim V et al (2011) The value of flat-detector computed tomography during catheterisation of congenital heart disease. Eur Radiol 21:2511–2520

    Article  PubMed  Google Scholar 

  16. Goo HW, Suh DS (2006) Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 36(4):344–351

    Article  PubMed  Google Scholar 

  17. Hart D, Jones G, Wall BF (1004) Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements. National Radiological Protection Board, Oxon

    Google Scholar 

  18. Hart D, Jones G, Wall BF (1996) Coefficients for estimating effective dose from paediatric X-ray examinations. National Radiological Protection Board, Oxon

    Google Scholar 

  19. Hirsch R, Gottliebson W, Crotty E, Fleck R, Strife J (2012) Computed tomography angiography with three-dimensional reconstruction for pulmonary venous definition in high-risk infants with congenital heart disease. Congenit Heart Dis 1(3):104–110

    Article  Google Scholar 

  20. Hlavacek AM (2010) Imaging of congenital cardiovascular disease: the case for computed tomography. J Thorac Imaging 25(3):247–255

    Article  PubMed  Google Scholar 

  21. Hlavacek AM, Baker GH, Shirali GS (2009) Innovation in three-dimensional echocardiography and cardiac computed tomographic angiography. Cardiol Young 19(2):35–42

    Article  PubMed  Google Scholar 

  22. Huda W, Mettler FA (2010) Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology 258(1):236–242

    Article  PubMed  Google Scholar 

  23. Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248(3):995–1003

    Article  PubMed  Google Scholar 

  24. Huda W, Sterzik A, Tipnis S (2010) X-ray beam filtration, dosimetry phantom size and CT patient dose conversion factors. Phys Med Biol 55(2):551–561

    Article  PubMed  Google Scholar 

  25. Huda W, Tipnis S, Sterzik A, Schoepf UJ (2010) Computing effective dose in cardiac CT. Phys Med Biol 55(13):3675–3684

    Article  PubMed  Google Scholar 

  26. Huda W, Rowlett WT, Schoepf UJ (2010) Radiation dose at cardiac computed tomography: facts and fiction. J Thorac Imaging 25(3):204–212

    Article  PubMed  Google Scholar 

  27. Jhang WK, Park J, Seo D et al (2008) Perioperative evaluation of airways in patients with arch obstruction and intracardiac defects. Ann Thorac Surg 85:1753–1758

    Article  PubMed  Google Scholar 

  28. Kaste S, Laningham F, Stazzone M, Brown SD et al (2007) Safety in pediatric MR and cardiac CT: Results of a membership survey of the Society for Pediatric Radiology. Pediatr Radiol 37(4):409–412

    Article  PubMed  Google Scholar 

  29. Ki HO, Ki SC, Soo JL, Hyoung DL et al (2009) Multidetector CT evaluation of total anomalous pulmonary venous connections: comparison with echocardiography. Pediatr Radiol 39:950–954

    Article  Google Scholar 

  30. Kilner PJ (2011) The role of cardiovascular magnetic resonance in adults with congenital heart disease. Prog Cardiovasc Dis 54(3):295–304

    Article  PubMed  Google Scholar 

  31. Kim JE, Newman B (2010) Evaluation of a radiation dose reduction strategy for pediatric chest CT. Am J Roentgenol 194(5):1188–1193

    Article  Google Scholar 

  32. Krishnamurthy R (2009) The role of MRI and CT in congenital heart disease. Pediatr Radiol 39(2):196–204

    Article  Google Scholar 

  33. Linton OW, Mettler FA Jr (2003) National conference on dose reduction in CT with an emphasis on pediatric patients. AJR Am J Roentgenol 181(2):321–329

    Article  PubMed  Google Scholar 

  34. McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CTRadiation dose in CT. Radiographics 22(6):1541–1553

    Article  PubMed  Google Scholar 

  35. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263

    Article  PubMed  Google Scholar 

  36. National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII, Phase 2. National Academy Press, Washington, DC

    Google Scholar 

  37. Noce T, Gupta N, Posteraro A, Kim C (2010) Dual-source cardiac computed tomographic technique, anatomy, and normal variants. Curr Probl Diagn Radiol 39(1):37–50

    Article  PubMed  Google Scholar 

  38. Ntsinjana HN, Hughes ML et al (2011) The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson 13:51

    Article  PubMed  Google Scholar 

  39. Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41(2):244–249

    Article  PubMed  Google Scholar 

  40. Pemberton J, Sahn DJ (2001) Imaging of the aorta. Int J Cardiol 97(1):53–60

    Google Scholar 

  41. Rajeshkannan R, Moorthy S, Sreekumar KP, Ramachandran PV, Kumar RK, Remadevi KS (2010) Role of 64-MDCT in evaluation of pulmonary atresia with ventricular septal defect. Am J Roentgenol 194(1):110–118

    Article  Google Scholar 

  42. Rassow J, Schmaltz AA, Hentrich F, Streffer C (2000) Effective doses to patients from paediatric cardiac catheterization. Br J Radiol 73(866):172–183

    PubMed  CAS  Google Scholar 

  43. Rigatelli G, Zamboni A et al (2008) Three-dimensional rotational digital angiography in catheter-based congenital heart disease interventions. J Cardiovasc Med 9(4):432

    Article  Google Scholar 

  44. Schultz FW, Geleijns J, Spoelstra FM, Zoetelief J (2003) Monte Carlo calculations for assessment of radiation dose to patients with congenital heart defects and to staff during cardiac catheterizations. Br J Radiol 76(909):638–647

    Article  PubMed  CAS  Google Scholar 

  45. Sessa T, Sessa P, Gregory B, Vranicar M (2009) The use of 3D contrast-enhanced CT reconstructions to project images of vascular rings and coarctation of the aorta. Echocardiography 26(1):76–81

    Article  PubMed  Google Scholar 

  46. Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79(948):968–980

    Article  PubMed  CAS  Google Scholar 

  47. Siegel MJ et al (2005) MDCT of postoperative anatomy and complications in adults with cyanotic heart disease. AJR Am J Roentgenol 184(1):241–247

    Article  PubMed  Google Scholar 

  48. Slovis TL (2003) Children, computed tomography radiation dose, and the as low as reasonably achievable (ALARA) concept. Pediatrics 112(4):971–972

    Article  PubMed  Google Scholar 

  49. Srinivasan KG, Gaikwad A, Kannan BR, Ritesh K, Ushanandini KP (2008) Congenital coronary artery anomalies: diagnosis with 64 slice multidetector row computed tomography coronary angiography: a single-centre study. J Med Imaging Radiat Oncol 52(2):148–154

    Article  PubMed  CAS  Google Scholar 

  50. Ucar T, Fitoz S, Tutar E, Atalay S, Uysalel A (2008) Diagnostic tools in the preoperative evaluation of children with anomalous pulmonary venous connections. Int J Cardiovasc Imaging 24(2):229–235

    Article  PubMed  Google Scholar 

  51. Westra SJ, Hill JA, Alejos JC, Galindo A, Boechat MI, Laks H (1999) Three-dimensional helical CT of pulmonary arteries in infants and children with congenital heart disease. AJR Am J Roentgenol 173(1):109–115

    Article  PubMed  CAS  Google Scholar 

  52. Young C, Taylor AM, Owens CM (2011) Paediatric cardiac computed tomography: a review of imaging techniques and radiation dose consideration. Eur Radiol 21(3):518–529

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. Schoepf receives research support from and is a consultant for Bayer-Schering, Bracco, General Electric, Medrad, and Siemens. Financial support provided to Dr. Watson by the National Institutes of Health: Ruth L. Kirschstein National Research Service Award (NRSA) T32 Grant. The authors do not have any other relationships with industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timotheus G. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, T.G., Mah, E., Joseph Schoepf, U. et al. Effective Radiation Dose in Computed Tomographic Angiography of the Chest and Diagnostic Cardiac Catheterization in Pediatric Patients. Pediatr Cardiol 34, 518–524 (2013). https://doi.org/10.1007/s00246-012-0486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-012-0486-2

Keywords

Navigation