Skip to main content
Log in

Controlling a Nonlinear Fokker–Planck Equation via Inputs with Nonlocal Action

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

This paper concerns an optimal control problem (P) associated to a nonlinear Fokker–Planck equation via inputs with nonlocal action. The Fokker–Planck equation describes the dynamics of the probability density of a population under a control that produces a repellent vector field which displaces the population. Actually, problem (P) asks to optimally displace a population via the repellent action produced by the control. The problem is deeply related to a stochastic optimal control problem \((P_S)\) for a McKean–Vlasov equation. The existence of an optimal control is obtained for the deterministic problem (P). The existence of an optimal control is established and necessary optimality conditions are derived for a penalized optimal control problem \((P_h)\) related to a backward Euler approximation of the nonlinear Fokker–Planck equation (with a constant discretization step h). Using a passing-to-the-limit-like argument (as \(h\rightarrow 0\)) one derives the necessary optimality conditions for problem (P). Some possible extensions are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aniţa, Ş-L.: Optimal control of stochastic differential equations via Fokker-Planck equations. Appl. Math. Optim. 84, 1555–1583 (2021)

    Article  MathSciNet  Google Scholar 

  2. Aniţa, Ş-L.: A stochastic optimal control problem with feedback inputs. Int. J. Control 95, 589–602 (2022)

    Article  MathSciNet  Google Scholar 

  3. Aniţa, Ş-L.: Optimal control for stochastic differential equations and related Kolmogorov equations. Evol. Equ. Control Theory 12, 118–137 (2023)

    Article  MathSciNet  Google Scholar 

  4. Aniţa, Ş.-L.: Controlling a nonlinear Fokker-Planck equation via inputs with nonlocal action. arXiv:2207.10126 [math.OC] (2022)

  5. Aniţa, Ş-L.: Controlling a generalized Fokker-Planck equation via inputs with nonlocal action. Nonlinear Anal. 241, 113476 (2024)

    Article  MathSciNet  Google Scholar 

  6. Annunziato, M., Borzi, A.: A Fokker-Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237, 487–507 (2013)

    Article  MathSciNet  Google Scholar 

  7. Annunziato, M., Borzi, A.: A Fokker-Planck control framework for stochastic systems. EMS Surv. Math. Sci. 5, 65–98 (2018)

    Article  MathSciNet  Google Scholar 

  8. Annunziato, M., Borzi, A.: A Fokker-Planck approach to the reconstruction of a cell membrane potential. SIAM J. Sci. Comput. 43(3), B623–B649 (2021)

    Article  MathSciNet  Google Scholar 

  9. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993)

    Google Scholar 

  10. Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, Berlin (2010)

    Book  Google Scholar 

  11. Barbu, V.: Optimal feedback controllers for a stochastic differential equation with reflection. SIAM J. Control Optim. 58(2), 986–997 (2020)

    Article  MathSciNet  Google Scholar 

  12. Barbu, V.: Existence of optimal control for nonlinear Fokker-Planck equations in \(L^1(\mathbb{R} ^d)\). SIAM J. Control Optim. 61(3), 1213–1230 (2023)

    Article  MathSciNet  Google Scholar 

  13. Barbu, V., Benazzoli, C., Di Persio, L.: Feedback optimal controllers for the Heston model. Appl. Math. Optim. 81, 739–756 (2020)

    Article  MathSciNet  Google Scholar 

  14. Barbu, V., Bonaccorsi, S., Tubaro, L.: Stochastic differential equations with variable structure driven by multiplicative Gaussian noise and sliding mode dynamics. Math. Control Signals Syst. 28, 26 (2016)

    Article  MathSciNet  Google Scholar 

  15. Barbu, V., Röckner, M.: From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE. Ann. Probab. 48, 1902–1920 (2020)

    Article  MathSciNet  Google Scholar 

  16. Barbu, V., Röckner, M.: Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs. Stoch. PDE: Anal. Comput. 9, 702–713 (2021)

    Article  MathSciNet  Google Scholar 

  17. Barbu, V., Röckner, M.: Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations. J. Funct. Anal. 280(7), 108926 (2021)

    Article  MathSciNet  Google Scholar 

  18. Barbu, V., Röckner, M.: Uniqueness for nonlinear Fokker-Planck equations and for McKean-Vlasov SDEs: the degenerate case. J. Funct. Anal. 285(4), 109980 (2023)

    Article  MathSciNet  Google Scholar 

  19. Barbu, V., Röckner, M., Zhang, D.: Optimal control of nonlinear stochastic differential equations on Hilbert spaces. SIAM J. Control Optim. 58(4), 2383–2410 (2020)

    Article  MathSciNet  Google Scholar 

  20. Bertozzi, A.L., Slepcev, D.: Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Comm. Pure Appl. Anal. 9(6), 1617–1637 (2010)

    Article  MathSciNet  Google Scholar 

  21. Burger, M., Di Francesco, M., Dolak-Struss, Y.: The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion. SIAM J. Math. Anal. 38, 1288–1315 (2006)

    Article  MathSciNet  Google Scholar 

  22. Burger, M., Pietschmann, J.-F., Wolfram, M.-T.: Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Probl. Imaging 7(4), 1157–1182 (2013)

    Article  MathSciNet  Google Scholar 

  23. Capasso, V., Bakstein, D.: An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology, and Medicine, 4th edn. Birkhäuser, Cham (2021)

    Book  Google Scholar 

  24. Capasso, V., Morale, D.: Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 27(3), 574–603 (2009)

    Article  MathSciNet  Google Scholar 

  25. Carillo, J.A., Craig, K., Yao, Y.: Aggregation-diffusion equations: dynamics, asymptotics and singular limits. arXiv: 1810.03634v1 [math.AP] (2018)

  26. Di Persio, L., Kuchling, P.: Optimal control of McKean-Vlasov equations with controlled stochasticity. arXiv:2305.09379v1 [math.OC] (2023)

  27. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254, 109–153 (2008)

    Article  MathSciNet  Google Scholar 

  28. Fleig, A., Gugliemi, R.: Optimal control of the Fokker-Planck equation with space-dependent controls. J. Optim. Theory Appl. 174(2), 408–427 (2017)

    Article  MathSciNet  Google Scholar 

  29. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer-Verlag, New York (1975)

    Book  Google Scholar 

  30. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  31. Huang, X., Ren, P., Wang, F.-Y.: Distribution dependent stochastic differential equations. Front. Math. China 16, 257–301 (2021)

    Article  MathSciNet  Google Scholar 

  32. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  Google Scholar 

  33. Marinoschi, G.: A semigroup approach to a reaction-diffusion system with cross-diffusion. Nonlinear Anal. 230, 113222 (2023)

    Article  MathSciNet  Google Scholar 

  34. Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications, 5th edn. Springer, Berlin (1998)

    Google Scholar 

  35. Painter, K.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 21(481), 162–182 (2019)

    Article  MathSciNet  Google Scholar 

  36. Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21, 1–41 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their comments and suggestions.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This present manuscript is the original contribution of the author.

Corresponding author

Correspondence to Ştefana-Lucia Aniţa.

Ethics declarations

Conflict of interest

The author have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aniţa, ŞL. Controlling a Nonlinear Fokker–Planck Equation via Inputs with Nonlocal Action. Appl Math Optim 89, 68 (2024). https://doi.org/10.1007/s00245-024-10135-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10135-4

Keywords

Mathematics Subject Classification

Navigation