Skip to main content
Log in

Solvability of Infinite Horizon McKean–Vlasov FBSDEs in Mean Field Control Problems and Games

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we show existence and uniqueness of solutions of the infinite horizon McKean–Vlasov FBSDEs using two different methods, which lead to two different sets of assumptions. We use these results to solve the infinite horizon mean field type control problems and mean field games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63, 341–356 (2011)

    Article  MATH  Google Scholar 

  2. Basei, M., Pham, H.: A weak martingale approach to linear-quadratic McKean-Vlasov stochastic control problems. J. Optim. Theory Appl. 181, 347–382 (2019)

    Article  MATH  Google Scholar 

  3. Bayraktar, E., Cecchin, A., Cohen, A., Delarue, F.: Finite state mean field games with Wright Fisher common noise as limits of \(N\)-player weighted games. Math. Oper. Res. (2022). https://doi.org/10.1287/moor.2021.1230

    Article  MATH  Google Scholar 

  4. Bayraktar, E., Cecchin, A., Cohen, A., Delarue, F.: Finite state Mean Field Games with Wright-Fisher common noise. J. Math. Pures Appl. 147, 98–162 (2021)

    Article  MATH  Google Scholar 

  5. Bayraktar, E., Cohen, A.: Analysis of a finite state many player game using its master equation. SIAM J. Control Optim. 56, 3538–3568 (2018)

    Article  MATH  Google Scholar 

  6. Bayraktar, E., Zhang, X.: On non-uniqueness in mean field games. Proc. Am. Math. Soc. 148, 4091–4106 (2020)

    Article  MATH  Google Scholar 

  7. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. SpringerBriefs in Mathematics, Springer, New York (2013)

    Book  MATH  Google Scholar 

  8. Cardaliaguet, P., Porretta, A.: Long time behavior of the master equation in mean field game theory. Anal. PDE 12, 1397–1453 (2019)

    Article  MATH  Google Scholar 

  9. Cardaliaguet, P., Rainer, C.: An example of multiple mean field limits in ergodic differential games. NoDEA 27, pp. Paper No. 25, 19 (2020)

  10. Carmona, R.: Lectures on BSDEs, stochastic control, and stochastic differential games with financial applications. vol. 1 of Financial Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2016)

  11. Carmona, R., Delarue, F.: Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18, pp. no. 68, 15 (2013)

  12. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. I, vol. 83 of Probability Theory and Stochastic Modelling. Springer, Cham (2018). Mean field FBSDEs, control, and games

  13. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. II, vol. 84 of Probability Theory and Stochastic Modelling, Springer, Cham (2018). Mean field games with common noise and master equations

  14. Carmona, R., Delarue, F., Lachapelle, A.: Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ. 7, 131–166 (2013)

    Article  MATH  Google Scholar 

  15. Cecchin, A., Pelino, G.: Convergence, fluctuations and large deviations for finite state mean field games via the master equation. Stoch. Process. Appl. 129, 4510–4555 (2019)

    Article  MATH  Google Scholar 

  16. Cecchin, A., Pra, P.D., Fischer, M., Pelino, G.: On the convergence problem in mean field games: a two state model without uniqueness. SIAM J. Control Optim. 57, 2443–2466 (2019)

    Article  MATH  Google Scholar 

  17. Chen, Y., Djehiche, B., Hamadène, S.: Mean-field backward–forward stochastic differential equations and nonzero sum stochastic differential games. Stoch. Dyn., p. 2150036 (2021)

  18. Cirant, M., Porretta, A.: Long time behaviour and turnpike solutions in mildly non-monotone mean field games. arXiv:2101.09965 (2021)

  19. Delarue, F., Foguen Tchuendom, R.: Selection of equilibria in a linear quadratic mean-field game. Stoch. Process. Appl. 130, 1000–1040 (2020)

    Article  MATH  Google Scholar 

  20. Huang, M., Caines, P.E., Malhame, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized \(\varepsilon \)-nash equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007)

    Article  MATH  Google Scholar 

  21. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–251 (2006)

    Article  MATH  Google Scholar 

  22. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)

    Article  MATH  Google Scholar 

  23. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. ii—horizon fini et contrôle optimal. Comptes Rendus Mathematique 343, 679–684 (2006)

    Article  MATH  Google Scholar 

  24. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MATH  Google Scholar 

  25. Ma, J., Yong, J.: Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics, vol. 1702. Springer, Berlin (1999)

    MATH  Google Scholar 

  26. Pardoux, E., BSDEs, weak convergence and homogenization of semilinear PDEs. In: Nonlinear Analysis, Differential Equations and Control (Montreal, QC,: vol. 528 of NATO Sci. Ser. C Math. Phys. Sci., Kluwer Acad. Publ. Dordrecht 1999, 503–549 (1998)

  27. Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Rozovskii, B.L., Sowers, R.B. (eds.) Stochastic Partial Differential Equations and Their Applications, pp. 200–217. Springer, Berlin (1992)

    Chapter  MATH  Google Scholar 

  28. Pardoux, E., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)

    Article  MATH  Google Scholar 

  29. Pardoux, E., Tang, S.: Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114, 123–150 (1999)

    Article  MATH  Google Scholar 

  30. Peng, S., Shi, Y.: Infinite horizon forward-backward stochastic differential equations. Stoch. Process. Appl. 85, 75–92 (2000)

    Article  MATH  Google Scholar 

  31. Pham, H.: Continuous-time stochastic control and optimization with financial applications. In: Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009)

  32. Priuli, F.S.: Linear-quadratic \(N\)-person and mean-field games: infinite horizon games with discounted cost and singular limits. Dyn. Games Appl. 5, 397–419 (2015)

    Article  MATH  Google Scholar 

  33. Yin, J.: On solutions of a class of infinite horizon FBSDEs. Stat. Probab. Lett. 78, 2412–2419 (2008)

    Article  MATH  Google Scholar 

Download references

Funding

Funding was provided by Directorate for Mathematical and Physical Sciences (Grant No. DMS-2106556).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Bayraktar.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. Bayraktar is partially supported by the National Science Foundation under grant DMS-2106556 and by the Susan M. Smith chair.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, E., Zhang, X. Solvability of Infinite Horizon McKean–Vlasov FBSDEs in Mean Field Control Problems and Games. Appl Math Optim 87, 13 (2023). https://doi.org/10.1007/s00245-022-09926-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09926-4

Keywords

Mathematics Subject Classification

Navigation