Skip to main content
Log in

Abstract

The main objective of the present paper is to formulate sufficient conditions under which a nonautonomous dynamics acting on a arbitrary Fréchet space exhibits shadowing property and (partial) linearization. These conditions require that the linear part is hyperbolic (in the sense of the concept recently introduced by Aragão Costa) and that the nonlinear part is Lipschitz. Our results extend those previously known in the setting of nonautonomous dynamics acting on Banach space. We consider both the case of discrete and continuous time dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aragão Costa, E.R.: An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Commun. Pure Appl. Anal. 18, 845–868 (2019)

    Article  MathSciNet  Google Scholar 

  2. Backes, L., Dragičević, D.: A general approach to nonautonomous shadowing for nonlinear dynamics. Bull. Sci. Math. 170, 102996 (2021)

    Article  MathSciNet  Google Scholar 

  3. Backes, L., Dragičević, D.: Shadowing for infinite dimensional dynamics and exponential trichotomies. Proc. R. Soc. Edinb. Sect. A 151(3), 863–884 (2021)

    Article  MathSciNet  Google Scholar 

  4. Backes, L., Dragičević, D.: Smooth linearization of nonautonomous coupled systems. Discrete Contin. Dyn. Syst. Ser. B 28, 4497–4518 (2023)

    Article  MathSciNet  Google Scholar 

  5. Backes, L., Dragičević, D.: Multiscale linearization of nonautonomous systems. Proc. R. Soc. Edinb. Sect. A 153, 1609–1629 (2023)

    Article  MathSciNet  Google Scholar 

  6. Backes, L., Dragičević, D., Onitsuka, M., Pituk, M.: Conditional Lipschitz shadowing for ordinary differential equations. J. Dyn. Differ. Equat. (2023). https://doi.org/10.1007/s10884-023-10246-6

    Article  Google Scholar 

  7. Backes, L., Dragičević, D., Zhang, W.: Smooth linearization of nonautonomous dynamics under polynomial behaviour. Preprint arXiv:2210.04804

  8. Barbu, D., Buşe, C., Tabassum, A.: Hyers–Ulam stability and discrete dichotomy. J. Math. Anal. Appl. 423, 1738–1752 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bernardes, N., Jr., Cirilo, P.R., Darji, U.B., Messaoudi, A., Pujals, E.R.: Expansivity and shadowing in linear dynamics. J. Math. Anal. Appl. 461, 796–816 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bowen, R.: Markov partitions for axiom a diffeomorphisms. Am. J. Math. 92, 725–747 (1970)

    Article  MathSciNet  Google Scholar 

  11. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Math., vol. 470. Springer, London (1975)

    Book  Google Scholar 

  12. Buşe, C., Lupulescu, V., O’Regan, D.: Hyers–Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients. Proc. R. Soc. Edinb. Sect. A 150, 2175–2188 (2020)

    Article  MathSciNet  Google Scholar 

  13. Buşe, C., O’Regan, D., Saierli, O., Tabassum, A.: Hyers–Ulam stability and discrete dichotomy for difference periodic systems. Bull. Sci. Math. 140, 908–934 (2016)

    Article  MathSciNet  Google Scholar 

  14. Castañeda, A., Robledo, G.: Differentiability of Palmer’s linearization theorem and converse result for density function. J. Differ. Equ. 259, 4634–4650 (2015)

    Article  MathSciNet  Google Scholar 

  15. Castañeda, A., Jara, N.: A note on the differentiability of discrete Palmer’s linearization. Proc. R. Soc. Edinb. Sect. A Math. (2023). https://doi.org/10.1017/prm.2023.25

  16. Dragičević, D., Zhang, W.N., Zhang, W.M.: Smooth linearization of nonautonomous differential equations with a nonuniform dichotomy. Proc. Lond. Math. Soc. 121, 32–50 (2020)

    Article  MathSciNet  Google Scholar 

  17. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley Intercience, London (1999)

    Google Scholar 

  18. Grobman, D.: Homeomorphism of systems of differential equations. Dokl. Akad. Nauk SSSR 128, 880–881 (1959)

    MathSciNet  Google Scholar 

  19. Grobman, D.: Topological classification of neighborhoods of a singularity in \(n\)-space. Mat. Sb. (N.S.) 56, 77–94 (1962)

    MathSciNet  Google Scholar 

  20. Hartman, P.: On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana (2) 5, 220–241 (1960)

    MathSciNet  Google Scholar 

  21. Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11, 610–620 (1960)

    Article  MathSciNet  Google Scholar 

  22. Hartman, P.: On the local linearization of differential equations. Proc. Am. Math. Soc. 14, 568–573 (1963)

    Article  MathSciNet  Google Scholar 

  23. Jara, N.: Smoothness of class \(C^2\) of nonautonomous linearization without spectral conditions. J. Dyn. Diff. Equ. (2022). https://doi.org/10.1007/s10884-022-10207-5

    Article  Google Scholar 

  24. Palmer, K.J.: A generalization of Hartman’s linearization theorem. J. Math. Anal. Appl. 41, 753–758 (1973)

    Article  MathSciNet  Google Scholar 

  25. Palmer, K.: Shadowing in Dynamical Systems, Theory and Applications. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  26. Pilyugin, S.Y.: Shadowing in Dynamical Systems. Lecture Notes in Mathematics, vol. 1706. Springer, Berlin (1999)

    Google Scholar 

  27. Pilyugin, S.Y.: Multiscale conditional shadowing. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-10096-0

    Article  Google Scholar 

  28. Pilyugin, S.Y., Sakai, K.: Shadowing and Hyperbolicity. Lecture Notes in Mathematics, vol. 2193. Springer, Cham (2017)

    Book  Google Scholar 

Download references

Acknowledgements

L. Backes was partially supported by a CNPq-Brazil PQ fellowship under Grant No. 307633/2021-7. D. Dragičević was supported in part by Croatian Science Foundation under the Project IP-2019-04-1239 and by the University of Rijeka under the Projects uniri-prirod-18-9 and uniri-prprirod-19-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Backes.

Ethics declarations

Conflict of interest

No potential Conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backes, L., Dragičević, D. Stability of nonautonomous systems on Fréchet spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 105 (2024). https://doi.org/10.1007/s13398-024-01606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-024-01606-y

Keywords

Mathematics Subject Classification

Navigation