Skip to main content
Log in

A Primal-Dual Partial Inverse Algorithm for Constrained Monotone Inclusions: Applications to Stochastic Programming and Mean Field Games

  • Published:
Applied Mathematics & Optimization Submit manuscript

A Correction to this article was published on 11 August 2023

This article has been updated

Abstract

In this work, we study a constrained monotone inclusion involving the normal cone to a closed vector subspace and a priori information on primal solutions. We model this information by imposing that solutions belong to the fixed point set of an averaged nonexpansive mapping. We characterize the solutions using an auxiliary inclusion that involves the partial inverse operator. Then, we propose the primal-dual partial inverse splitting and we prove its weak convergence to a solution of the inclusion, generalizing several methods in the literature. The efficiency of the proposed method is illustrated in multiple applications including constrained LASSO, stochastic arc capacity expansion problems in transport networks, and variational mean field games with non-local couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010). https://doi.org/10.1137/090758477

    Article  MathSciNet  MATH  Google Scholar 

  2. Alghamdi, M.A., Alotaibi, A., Combettes, P.L., Shahzad, N.: A primal-dual method of partial inverses for composite inclusions. Optim. Lett. 8(8), 2271–2284 (2014). https://doi.org/10.1007/s11590-014-0734-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreev, R.: Preconditioning the augmented Lagrangian method for instationary mean field games with diffusion. SIAM J. Sci. Comput. 39(6), A2763–A2783 (2017). https://doi.org/10.1137/16M1072346

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE’s. J. Convex Anal. 15(3), 485–506 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48(5), 3246–3270 (2010). https://doi.org/10.1137/090754297

    Article  MathSciNet  MATH  Google Scholar 

  6. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006). https://doi.org/10.1007/s11263-006-4331-z

    Article  MATH  Google Scholar 

  7. Bardi, M., Feleqi, E.: Nonlinear elliptic systems and mean-field games. NoDEA Nonlinear Differ. Equ. Appl. 23(4), Art. 44, 32 (2016). https://doi.org/10.1007/s00030-016-0397-7

  8. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48311-5

  9. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Tech. Rep, New Haven (1956)

  10. Benamou, J.D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015). https://doi.org/10.1007/s10957-015-0725-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Benamou, J.D., Carlier, G., Santambrogio, F.: Variational mean field games. In: Active Particles, vol. 1. Advances in Theory, Models, and Applications. Modeling and Simulation in Science, Engineering and Technology, pp. 141–171. Birkhäuser/Springer, Cham (2017)

  12. Briceño-Arias, L.M.: Forward-partial inverse-forward splitting for solving monotone inclusions. J. Optim. Theory Appl. 166(2), 391–413 (2015). https://doi.org/10.1007/s10957-015-0703-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Briceño-Arias, L.M.: Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization 64(5), 1239–1261 (2015). https://doi.org/10.1080/02331934.2013.855210

    Article  MathSciNet  MATH  Google Scholar 

  14. Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011). https://doi.org/10.1137/10081602X

    Article  MathSciNet  MATH  Google Scholar 

  15. Briceño-Arias, L., López Rivera, S.: A projected primal-dual method for solving constrained monotone inclusions. J. Optim. Theory Appl. 180(3), 907–924 (2019). https://doi.org/10.1007/s10957-018-1430-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Briceño-Arias, L.M., Kalise, D., Silva, F.J.: Proximal methods for stationary mean field games with local couplings. SIAM J. Control Optim. 56(2), 801–836 (2018). https://doi.org/10.1137/16M1095615

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997). https://doi.org/10.1007/s002110050258

    Article  MathSciNet  MATH  Google Scholar 

  18. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, X., Wets, R.J.B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim. 22(2), 649–673 (2012). https://doi.org/10.1137/110825248

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, X., Pong, T.K., Wets, R.J.B.: Two-stage stochastic variational inequalities: an ERM-solution procedure. Math. Program. 165(1, Ser. B), 71–111 (2017). https://doi.org/10.1007/s10107-017-1132-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307–330 (2012). https://doi.org/10.1007/s11228-011-0191-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Cominetti, R., Peypouquet, J., Sorin, S.: Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization. J. Differ. Equ. 245(12), 3753–3763 (2008). https://doi.org/10.1016/j.jde.2008.08.007

    Article  MathSciNet  MATH  Google Scholar 

  23. Cominetti, R., Mascarenhas, W.F., Silva, P.J.S.: A Newton’s method for the continuous quadratic knapsack problem. Math. Program. Comput. 6(2), 151–169 (2014). https://doi.org/10.1007/s12532-014-0066-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013). https://doi.org/10.1007/s10957-012-0245-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004). https://doi.org/10.1002/cpa.20042

    Article  MathSciNet  MATH  Google Scholar 

  26. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer, New York (2003)

  27. Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, vol. 15, pp. 299–331. Elsevier, New York (1983). https://doi.org/10.1016/S0168-2024(08)70034-1

  28. Gaines, B.R., Kim, J., Zhou, H.: Algorithms for fitting the constrained lasso. J. Comput. Graph. Stat. 27(4), 861–871 (2018). https://doi.org/10.1080/10618600.2018.1473777

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007). https://doi.org/10.1109/TAC.2007.904450

    Article  MathSciNet  MATH  Google Scholar 

  30. James, G.M., Paulson, C., Rusmevichientong, P.: Penalized and constrained optimization: an application to high-dimensional website advertising. J. Am. Stat. Assoc. 115(529), 107–122 (2020). https://doi.org/10.1080/01621459.2019.1609970

    Article  MathSciNet  MATH  Google Scholar 

  31. Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20(4), 567–588 (2010). https://doi.org/10.1142/S0218202510004349

    Article  MathSciNet  MATH  Google Scholar 

  32. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006). https://doi.org/10.1016/j.crma.2006.09.019

    Article  MathSciNet  MATH  Google Scholar 

  33. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007). https://doi.org/10.1007/s11537-007-0657-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979). https://doi.org/10.1137/0716071

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, S., Jacobs, M., Li, W., Nurbekyan, L., Osher, S.J.: Computational methods for first-order nonlocal mean field games with applications. SIAM J. Numer. Anal. 59(5), 2639–2668 (2021). https://doi.org/10.1137/20M1334668

    Article  MathSciNet  MATH  Google Scholar 

  36. Martinet, B.: Brève communication. régularisation d’inéquations variationnelles par approximations successives. ESAIM Math. Model. Numer. Anal. 4(R3), 154–158 (1970)

    MATH  Google Scholar 

  37. Mercier, B.: Lectures on Topics in Finite Element Solution of Elliptic Problems. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 63. Tata Institute of Fundamental Research, Bombay (1979)

  38. Mercier, B.: Inéquations variationnelles de la mécanique, Publications Mathématiques d’Orsay 80 [Mathematical Publications of Orsay 80], vol. 1. Université de Paris-Sud, Département de Mathématique, Orsay (1980)

  39. Mészáros, A.R., Silva, F.J.: On the variational formulation of some stationary second-order mean field games systems. SIAM J. Math. Anal. 50(1), 1255–1277 (2018). https://doi.org/10.1137/17M1125960

    Article  MathSciNet  MATH  Google Scholar 

  40. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning. In: Adaptive Computation and Machine Learning. MIT Press, Cambridge (2018). Second edition of [MR3057769]

  41. Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7(1), 212–238 (2014). https://doi.org/10.1137/130920058

    Article  MathSciNet  MATH  Google Scholar 

  42. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17(3–4), 1113–1163 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  44. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976). https://doi.org/10.1137/0314056

    Article  MathSciNet  MATH  Google Scholar 

  45. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods. Prentice Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  46. Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10(3), 247–265 (1983). https://doi.org/10.1007/BF01448388

    Article  MathSciNet  MATH  Google Scholar 

  47. Tibshirani, R.J., Taylor, J.: The solution path of the generalized lasso. Ann. Stat. 39(3), 1335–1371 (2011). https://doi.org/10.1214/11-AOS878

    Article  MathSciNet  MATH  Google Scholar 

  48. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 67(1), 91–108 (2005). https://doi.org/10.1111/j.1467-9868.2005.00490.x

    Article  MathSciNet  MATH  Google Scholar 

  49. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013). https://doi.org/10.1007/s10444-011-9254-8

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, Y.X., Sharpnack, J., Smola, A.J., Tibshirani, R.J.: Trend filtering on graphs. J. Mach. Learn. Res. 17, 105, 41 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Yin, Y., Madanat, S.M., Lu, X.Y.: Robust improvement schemes for road networks under demand uncertainty. Eur. J. Oper. Res. 198(2), 470–479 (2009). https://doi.org/10.1016/j.ejor.2008.09.008

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author is supported by Centro de Modelamiento Matemático (CMM) FB210005 BASAL funds for centers of excellence, Redes 180032, and FONDECYT 1190871 from ANID-Chile. The second author is founded by the National Agency for Research and Development (ANID) under grant FONDECYT 11190549, respectively. The third author is founded by the Scholarship program CONICYT-PFCHA/MagísterNacional/2019 - 22190564 and FONDECYT 1190871 of ANID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Deride.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article was revised due to an error in author affiliation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briceño-Arias, L., Deride, J., López-Rivera, S. et al. A Primal-Dual Partial Inverse Algorithm for Constrained Monotone Inclusions: Applications to Stochastic Programming and Mean Field Games. Appl Math Optim 87, 21 (2023). https://doi.org/10.1007/s00245-022-09921-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09921-9

Keywords

Mathematics Subject Classification

Navigation