Skip to main content
Log in

Heat–Viscoelastic Plate Interaction via Bending Moment and Shear Forces Operators: Analyticity, Spectral Analysis, Exponential Decay

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider a heat–plate interaction model where the 2-dimensional plate is subject to viscoelastic (strong) damping. Coupling occurs at the interface between the two media, where each component evolves through differential operators. In this paper, we apply “high” boundary interface conditions, which involve the two classical boundary operators of a physical plate: the bending moment operator \(B_1\) and the shear forces operator \(B_2\). We prove three main results: analyticity of the corresponding contraction semigroup on the natural energy space; sharp location of the spectrum of its generator, which does not have compact resolvent, and has the point \(\lambda =-\,1\) in its continuous spectrum; exponential decay of the semigroup with sharp decay rate. Here analyticity cannot follow by perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Avalos, G., Triggiani, R.: The coupled PDE-system arising in fluid-structure interaction. Part I: Explicit semigroup generator and its spectral properties (with G. Avalos). AMS Contemp. Math. Fluids Waves 440, 15–55 (2007)

    Article  MATH  Google Scholar 

  2. Avalos, G., Triggiani, R.: Uniform stabilization of a coupled PDE system arising in fluid–structure interaction with boundary dissipation at the interface. Discret. Contin. Dyn. Syst. 22(4), 817–833 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avalos, G., Triggiani, R.: Semigroup well-posedness in the energy space of a parabolic–hyperbolic coupled Stokes–Lamé PDE system. Discret. Contin. Dyn. Syst. 2(3), 417–448 (2009)

    MATH  Google Scholar 

  4. Avalos, G., Triggiani, R.: A coupled parabolic-hyperbolic Stokes–Lamé PDE system: limit behavior of the resolvent operator on the imaginary axis. Appl. Anal. 88(9), 1357–1396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avalos, G., Triggiani, R.: Boundary feedback stabilization of a coupled parabolic–hyperbolic Stokes–Lamé PDE system. J. Evol. Equ. 9, 341–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avalos, G., Triggiani, R.: Rational decay rates for a PDE heat–structure interaction: a frequency domain approach. Evol. Equ. Control Theory 2(2), 233–253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avalos, G., Triggiani, R.: Fluid-structure interaction with and without internal dissipation of the structure: a contrast in stability. Evol. Equ. Control Theory 2(4), 563–598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic–hyperbolic fluid–structure interactive system. Georgian Math. J. 15(3), 403–437 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Weak solutions for nonlinear fluid–structure interaction. AMS Contemp. Math. 440, 55–81 (2007)

    Article  MATH  Google Scholar 

  10. Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Smoothness of weak solutions to a nonlinear fluid–structure interaction model. Indiana J. Math. 57(3), 1173–1207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G., Russel, D.L.: A mathematical model for linear elastic systems with structural damping. Q. Appl. Math. 39, 433–454 (1982)

    Article  MathSciNet  Google Scholar 

  12. Chen, S., Triggiani, R.: Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems: the case $\alpha = 1/2$. Springer-Verlag Lecture Notes in Mathematics 1354 (1988), 234–256. Proceedings of Seminar on Approximation and Optimization, University of Havana, Cuba (1987)

  13. Chen, S., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems: the case $1/2 \le \alpha \le 1$). Pac. J. Math. 136, 15–55 (1989)

    Article  MATH  Google Scholar 

  14. Chen, S., Triggiani, R.: Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications. J. Differ. Equ. 88, 279–293 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, S., Triggiani, R.: Gevrey class semigroups arising from elastic systems with gentle perturbation. Proc. Am. Math. Soc. 110, 401–415 (1990)

    MATH  Google Scholar 

  16. Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Analysis of a linear fluid–structure interaction problem. Discet. Dyn. Syst. 9(3), 633–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness for a freeboundary fluid-structure model. J. Math. Phys. 53(11), 115624 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness and small data global existence for an interface damped free boundary fluid–structure model. Nonlinearity 27(3), 467–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: Small data global existence for a fluid structure model with moving boundary. Nonlinearity 30(2), 848–898 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method, p. 156. Wiley, Paris (1994)

    MATH  Google Scholar 

  21. Kukavica, I., Tuffaha, A.: Regularity of solutions to a free boundary problem of fluid–structure interaction. Indiana Univ. Math. J. 61(5), 1817–1859 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a nonlinear fluid structure interaction system. J. Differ. Equ. 247(5), 1452–1478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions for a fluid structure interaction system. Adv. Differ. Equ. 15(3–4), 231–254 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a Navier–Stokes–Lamé system on a domain with a non-flat boundary. Nonlinearity 24(1), 159–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lagnese, J.: Distributed Parameter Systems. Uniform Boundary Stabilization of Homogeneous Isotropic Plates, vol. 50, pp. 204–215. Springer, Berlin (1987)

    Book  Google Scholar 

  26. Lagnese, J.: Boundary Stabilization of Thin Plate. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  27. Lasiecka, I., Lu, Y.: Stabilization of a fluid structure interaction with nonlinear damping. Control Cybern. 42(1), 155–181 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I, Abstract Parabolic Systems. Encyclopedia of Mathematics and Its Applications Series. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  29. Lasiecka, I., Triggiani, R.: Heat-structure interaction with viscoelastic damping: analyticity with sharp analytic sector, exponential decay, fractional powers. Commun. Pure Appl. Anal. 15(5), 1513–1543 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, J.L.: Quelques Methods de Resolution des Problemes aux Limits Nonlinearies. Dunod, Paris (1969)

    Google Scholar 

  31. Lions, J.L., Magenes, E.: Nonhomogeneous Boundary Value Propblems and Applications, p. 357. Springer, Berlin (1972)

    Book  Google Scholar 

  32. Lu, Y.: Uniform stabilization to equilibrium of a nonlinear fluid–structure interaction model. Nonlinear Anal. Real World Appl. 25, 51–63 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Naylor, A., Sell, G.: Linear Operator Theory in Engineering and Science, p. 624. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  35. Pruss, J.: On the spectrum of $C_0$ semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)

    Article  MATH  Google Scholar 

  36. Taylor, A., Lay, D.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)

    MATH  Google Scholar 

  37. Triggiani, R.: A heat-viscoelastic structure interaction model with Neumann or Dirichlet boundary control at the interface: optimal regularity, control theoretic implications. Appl. Math. Optim. 73(3), 571–594 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Triggiani, R.: Domain of fractional powers of the heat-structure operator with visco-elastic damping: regularity and control-theoretical implications. J. Evol. Equ. 17, 573–597 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Triggiani, R., Zhang, J.: Heat–visco-elastic interaction: analyticity, spectral analysis, exponential decay. Evol. Equ. Control Theory 7(1), 153–182 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, J.: The analyticity and exponential decay of a Stokes–Wave coupling system with viscoelastic damping in the variational framework. Evol. Equ. Control Theory 8(1), 111–134 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Research partially supported by the National Science Foundation under Grant DMS-1713506. The author wishes to thank two referees for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Triggiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Adjoint Operator \({\mathcal {A}^*}\)

Step 1 Here we establish Theorem 2.1 by identifying the adjoint operator \({\mathcal {A}}^*\). Let \([v_1,v_2,h]\in {\mathcal {D}}({\mathcal {A}})\) described in (2.6)–(2.9), and let \([\widehat{v}_1,\widehat{v}_2,\widehat{h}]\in {\mathcal {D}}({\mathcal {A}}^*)\) described in (2.14) and (2.17). Recalling \({\mathcal {A}}\) in (2.6) and the topology of \(\mathbf{H}\) in (2.4), we compute

$$\begin{aligned}&\left( {\mathcal {A}}\begin{bmatrix} v_1\\v_2\\h\end{bmatrix},\begin{bmatrix} \widehat{v}_1\\ \widehat{v}_2\\ \widehat{h} \end{bmatrix}\right) _{\mathbf{H}} = \left( \begin{bmatrix} 0&I&0\\De^2-I&-\Delta ^2&0\\ 0&0&\Delta \end{bmatrix}\begin{bmatrix} v_1\\v_2\\h\end{bmatrix},\begin{bmatrix} \widehat{v}_1\\ \widehat{v}_2 \\ \widehat{h}\end{bmatrix}\right) _{\mathbf{H}} \nonumber \\&\quad = \left( \begin{bmatrix} v_2\\ -\Delta ^2(v_1+v_2) - v_1\\ \Delta h\end{bmatrix},\begin{bmatrix} \widehat{v}_1\\ \widehat{v}_2\\ \widehat{h}\end{bmatrix} \right) _{\mathbf{H}} \end{aligned}$$
(A.1)
$$\begin{aligned}&=(\Delta v_2,\Delta \widehat{v}_1) + (v_2,\widehat{v}_1) - (\Delta ^2(v_1+v_2),\widehat{v}_2) - (v_1,\widehat{v}_2) +(\Delta h,\widehat{h}) \end{aligned}$$
(A.2)
$$\begin{aligned}&=(\Delta v_2,\Delta \widehat{v}_1) + (v_2,\widehat{v}_1) -(\Delta (v_1+v_2),\Delta \widehat{v}_2)-\left( \frac{\partial \Delta (v_1+v_2)}{\partial \nu },\widehat{v}_2\right) _{\Gamma _{s}}\nonumber \\&\qquad +\left( \Delta (v_1+v_2),\frac{\partial \widehat{v}_2}{\partial \nu }\right) _{\Gamma _{s}} \nonumber \\&\qquad - (v_1,\widehat{v}_2) +(h,\Delta \widehat{h})-\left( \frac{\partial h}{\partial \nu },\widehat{h}\right) _{\Gamma _{s}}+\left( h,\frac{\partial \widehat{h}}{\partial \nu }\right) _{\Gamma _{s}}. \end{aligned}$$
(A.3)

In going from (A.2) to (A.3), we have used Green’s second theorem for the third and fifth terms in (A.2), along with \(h|_{\Gamma _{f}}=0\) by (2.8) and \(\widehat{h}|_{\Gamma _{f}}=0\) by (2.17). We next recall \(\displaystyle \Delta (v_1+v_2)=-(1-\mu )B_1v_2\) on \(\Gamma _{s}\) by (2.9b) along with \(\frac{\partial \Delta (v_1+v_2)}{\partial \nu }=-(1-\mu )B_2v_2 + v_2 - \frac{\partial h}{\partial \nu }\) on \(\Gamma _{s}\) by (2.9c). We re-write (A.3) as

$$\begin{aligned}&\hbox {RHS of }(A.3)= (\Delta v_2,\Delta (\widehat{v}_1-\widehat{v}_2))-(\Delta v_1,\Delta \widehat{v}_2) - (v_1,\widehat{v}_2) + (v_2,\widehat{v}_1) \nonumber \\&\qquad +\,(1-\mu )\left( B_2v_2,\widehat{v}_2)\right) _{\Gamma _{s}} - (v_2,\widehat{v}_2)_{\Gamma _{s}} +\left( \frac{\partial h}{\partial \nu },\widehat{v}_2\right) _{\Gamma _{s}} \nonumber \\&\qquad -\,(1-\mu )\left( B_1v_2,\frac{\partial \widehat{v}_2}{\partial \nu })\right) _{\Gamma _{s}} + (h,\Delta \widehat{h}) - \left( \frac{\partial h}{\partial \nu },\widehat{h}\right) _{\Gamma _{s}} + \left( h, \frac{\partial \widehat{h}}{\partial \nu }\right) _{\Gamma _{s}}. \qquad \quad \end{aligned}$$
(A.4)

Step 2 Applying now Green’s second theorem to the first term in (A.4), we obtain as \(v_2 = h\) on \(\Gamma _{s}\) by (2.8):

(A.5)

where the cancellation occurs since \(\widehat{h}=\widehat{v}_2\) on \(\Gamma _{s}\) by (2.17). Next, we recall by (2.16b) and (2.16c) that

$$\begin{aligned} \Delta (\widehat{v}_1 - \widehat{v}_2) = (1-\mu ) B_1 \widehat{v}_2 \ \hbox { on } \ \Gamma _{s}\quad \hbox { and } \quad \frac{\partial \Delta (\widehat{v}_1 - \widehat{v}_2) }{\partial \nu } + \widehat{v}_2 - \frac{\partial \widehat{h}}{\partial \nu } = (1-\mu ) B_2 \widehat{v}_2 \ \hbox { on } \Gamma _{s}. \end{aligned}$$
(A.6)

We obtain recalling the topology (2.4):

$$\begin{aligned} \begin{aligned} \hbox {RHS of }(\mathrm{A.3}) =&\left( \begin{bmatrix} v_1\\v_2\\h \end{bmatrix}, \begin{bmatrix} -\widehat{v}_2\\ \Delta ^2(\widehat{v}_1 - \widehat{v}_2) + \widehat{v}_1 \\ \Delta \widehat{h}\end{bmatrix}\right) \\&- (1-\mu )\left[ \left( B_1v_2,\frac{\partial \widehat{v}_2}{\partial \nu })\right) _{\Gamma _{s}} - (B_2 v_2, \widehat{v}_2)_{\Gamma _{s}} \right] \\&+ (1-\mu )\left[ \left( \frac{\partial v_2}{\partial \nu },B_1\widehat{v}_2)\right) _{\Gamma _{s}} - (v_2, B_2 \widehat{v}_2)_{\Gamma _{s}} \right] . \end{aligned} \end{aligned}$$
(A.7)

Step 3 We now invoke the following fundamental result.

Lemma A.1

[28, Corollary 3C.3, p. 301] Let \(f, g \in H^2(\Omega _{s})\). Then

$$\begin{aligned} \int _{\Gamma _{s}} \left[ (B_1 f) \frac{\partial g}{\partial \nu } - (B_2 f) g \right] \,d\Gamma _{s}&= \int _{\Gamma _{s}} \left[ (B_1 g) \frac{\partial f}{\partial \nu } - (B_2 g) f \right] \,d\Gamma _{s}\nonumber \\&= \int _{\Omega _{s}} \big [ 2(f_{xy} g_{xy} - f_{xx} g_{yy} - f_{yy} g_{xx} \big ]\,d\Omega _{s} \end{aligned}$$
(A.8)

Applying the above Lemma with \(f=v_2, g = \widehat{v}_2 \in H^2(\Omega _{s})\), we obtain

$$\begin{aligned} \left( B_1 v_2,\frac{\partial \widehat{v}_2}{\partial \nu })\right) _{\Gamma _{s}} - (B_2 v_2, \widehat{v}_2)_{\Gamma _{s}} = \left( B_1 \widehat{v}_2,\frac{\partial v_2}{\partial \nu })\right) _{\Gamma _{s}} - (B_2 \widehat{v}_2, v_2)_{\Gamma _{s}}. \end{aligned}$$
(A.9)

Thus (A.9) used in (A.7) produces a cancellation of the boundary terms and yields

$$\begin{aligned}&\left( {\mathcal {A}}\begin{bmatrix} v_1\\v_2\\h \end{bmatrix}, \begin{bmatrix} \widehat{v}_1\\ \widehat{v}_2\\ \widehat{h}\end{bmatrix}\right) _{\mathbf{H}} = (\Delta v_1,\Delta (-\widehat{v}_2))+(v_1,(-\widehat{v}_2))+\left( v_2,\Delta ^2(\widehat{v}_1-\widehat{v}_2)\right) +(v_2,\widehat{v}_1)\nonumber \\&\qquad +(h,\Delta \widehat{h})\nonumber \\&\quad = \left( \begin{bmatrix} v_1\\ v_2\\h \end{bmatrix},\begin{bmatrix} -\widehat{v}_2 \\ \Delta ^2(\widehat{v}_1-\widehat{v}_2) + \widehat{v}_1 \\ \Delta \widehat{h}\end{bmatrix}\right) _{\mathbf{H}} = \left( \begin{bmatrix} v_1\\ v_2\\h\end{bmatrix}, \begin{bmatrix} 0&-I&0\\ \Delta ^2+I&-\Delta ^2&0\\ 0&0&\Delta \end{bmatrix} \begin{bmatrix} \widehat{v}_1\\ \widehat{v}_2\\ \widehat{h}\end{bmatrix}\right) _{\mathbf{H}}\nonumber \\ \end{aligned}$$
(A.10)

for \([v_1,v_2,h]\in {\mathcal {D}}({\mathcal {A}})\) in (2.6)–(2.9) and \([\widehat{v}_1,\widehat{v}_2,\widehat{h}]\in {\mathcal {D}}({\mathcal {A}}^*)\) in (2.14) and (2.17). Theorem 2.1 is proved.

Appendix B: Proof of Theorem 2.5 for Problem (2.34)

(i) (Compare with Sect. 3.1) The proof is based on the following alternative Green formula [28, Proposition C.12, p. 310], which introduces the positive bilinear form \(a(\cdot ,\cdot )\) in the first place.

$$\begin{aligned} (\Delta ^2 f,g)_{\Omega _{s}}= & {} a(f,g) + \int _{\Omega _{s}}\left[ \frac{\partial \Delta f}{\partial \nu } + (1-\mu ) B_2 f\right] g\, d\Omega _{s}\nonumber \\&- \int _{\Gamma _{s}}\left[ \Delta f + (1-\mu ) B_1 f\right] \frac{\partial g}{\partial \nu } \, d\Gamma _{s}\end{aligned}$$
(B.1)

with a(fg) defined in (2.35). Next, for \([v_1,v_2,h] \in {\mathcal {D}}(\widetilde{{\mathcal {A}}})\), we compute via (2.36) and (2.37) and the Green formula (B.1):

$$\begin{aligned} \left( \widetilde{{\mathcal {A}}} \begin{bmatrix} v_1\\v_2\\h \end{bmatrix}, \begin{bmatrix} v_1\\v_2\\h \end{bmatrix} \right) _{\widetilde{\mathbf{H}}}&= \left( \begin{bmatrix} v_2\\ - \Delta ^2(v_1+v_2)\\ \Delta h \end{bmatrix}, \begin{bmatrix} v_1\\v_2\\h \end{bmatrix} \right) _{\widetilde{\mathbf{H}}} \end{aligned}$$
(B.2)
$$\begin{aligned}&= a(v_2,v_1) - (\Delta ^2(v_1 + v_2),v_2) + (\Delta h, h) \end{aligned}$$
(B.3)
$$\begin{aligned} \hbox {(by }(\mathrm{B.1})) \qquad&= a(v_2,v_1) - a(v_1+v_2,v_2) \nonumber \\&\qquad - \left( \dfrac{\partial \Delta (v_1 + v_2)}{\partial \nu } + (1-\mu )B_2 (v_1 + v_2), v_2 \right) _{\Gamma _{s}} \nonumber \\&\qquad + \left( \Delta (v_1 + v_2) + (1-\mu )B_1 (v_1 + v_2), \dfrac{\partial v_2}{\partial \nu } \right) _{\Gamma _{s}} \nonumber \\&\qquad - \left( \dfrac{\partial h}{\partial \nu }, h \right) _{\Gamma _{s}} - \Vert \nabla h\Vert ^2 \end{aligned}$$
(B.4)

since \(h|_{\Gamma _{f}} = 0\) in \(\widetilde{{\mathcal {A}}}\), see (2.34e). Next, the B.C. of \(\widetilde{{\mathcal {A}}}\) include also (see (2.34c), (2.34d))

$$\begin{aligned} \Delta (v_1 + v_2) + (1-\mu )B_1 (v_1 + v_2)&= -\dfrac{\partial v_2}{\partial \nu } \quad \hbox {on } \Gamma _{s} \end{aligned}$$
(B.5)
$$\begin{aligned} \dfrac{\partial \Delta (v_1 + v_2)}{\partial \nu } + (1-\mu )B_2 (v_1 + v_2)&= v_2 - \dfrac{\partial h}{\partial \nu } \quad \hbox {on } \Gamma _{s} \end{aligned}$$
(B.6)

The (B.4) becomes via (B.5), (B.6), as well as \(a(v_1+v_2, v_2) = a(v_1, v_2) + a(v_2, v_2)\):

(B.7)
(B.8)

recalling \(h = v_2\) on \(\Gamma _{s}\) by (2.34e). Since \(\hbox {Re}\{a(v_2,v_1) - a(v_1,v_2)\}=0\), then (B.8) yields

$$\begin{aligned} \hbox {Re}\left( \widetilde{{\mathcal {A}}} \begin{bmatrix} v_1\\v_2\\h \end{bmatrix}, \begin{bmatrix} v_1\\v_2\\h \end{bmatrix} \right) _{\widetilde{\mathbf{H}}}= & {} -a(v_2,v_2) - \Vert \nabla h\Vert ^2 - \Vert v_2\Vert _{\Gamma _{s}}^2 \nonumber \\&- \left\| \dfrac{\partial v_2}{\partial \nu } \right\| ^2_{\Gamma _{s}} \le 0, \quad [v_1,v_2,h] \in {\mathcal {D}}(\widetilde{{\mathcal {A}}}) \end{aligned}$$
(B.9)

and Part (i) of Theorem 2.5 is established.

(ii) Let \(x^*=[v_1^*,v_2^*,h^*]\in \widetilde{\mathbf{H}}\), we seek to solve \(\tilde{{\mathcal {A}}}x=x^*\) for \(x=[v_1,v_2,h]\in {\mathcal {D}}(\tilde{{\mathcal {A}}})\), with bounded inverse. From (2.37) we have as in (3.14)

$$\begin{aligned} \tilde{{\mathcal {A}}}\begin{bmatrix} v_1\\v_2\\h\end{bmatrix}=\begin{bmatrix} v_2\\ -\Delta ^2(v_1+v_2)\\ \Delta h\end{bmatrix}=\begin{bmatrix} v_1^*\\v_2^*\\ h^*\end{bmatrix},\quad v_2=v_1^*\in H^2(\Omega _{s}) \end{aligned}$$
(B.10)

We have

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta h=h^*\in L_2(\Omega _f)\\ h|_{\Gamma _{f}}=0,\ h|_{\Gamma _{s}}=v_2|_{\Gamma _{s}}=v_1^*|_{\Gamma _{s}}\in H^{3/2}(\Gamma _{s}) \end{array}\right. },\quad h=A_D^{-1} h^*+\widetilde{D_f}\Big (v_1^*|_{\Gamma _{s}}\Big )\in H^2(\Omega _{f}).\nonumber \\ \end{aligned}$$
(B.11)

The novelty is that now the equation of (B.10) has different B.C., as in (2.38a)-(2.38b), so that now

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta ^2(v_1+v_1^*)=-v_2^*\in L_2(\Omega _s)\\ \Big [\Delta (v_1+v_1^*)+(1-\mu )B_1(v_1+v_1^*)\Big ]=-\dfrac{\partial v_1^*}{\partial \mu }\in H^{1/2}(\Gamma _{s})\\ \Big [\dfrac{\partial \Delta (v_1+v_1^*)}{\partial \nu }+(1-\mu )B_2(v_1+v_1^*)\Big ]_{\Gamma _{s}}=\Big [v_1^*-\dfrac{\partial h}{\partial \nu }\Big ]_{\Gamma _{s}}\in H^{1/2}(\Gamma _{s}). \end{array}\right. } \end{aligned}$$
(B.12)

Then recalling the operator \(\mathbb {A}\) in (2.11) and the Green maps \(G_1\) and \(G_2\) from (2.13), we obtain via (B.12)

$$\begin{aligned} v_1+v_1^*=-\mathbb {A}^{-1}v_2^*-G_1\Big (\frac{\partial v_1^*}{\partial \nu }\Big |_{\Gamma _{s}}\Big )-G_2\Big [v_1^*-\frac{\partial h}{\partial \nu }\Big ]_{\Gamma _{s}} \in H^3(\Omega _{s}). \end{aligned}$$
(B.13)

So that, ultimately \(v_2\in H^2(\Omega _{s})\), as required, recalling the regularity properties of \(G_1\), \(G_2\) in (2.13), so that \(\displaystyle G_2\Big ([v_1^*-\dfrac{\partial h}{\partial \nu }\Big ]_{\Gamma _{s}}\in H^{1/2+7/2}(\Omega _{s})=H^4(\Omega _{s})\), and \(G_1\Big (\frac{\partial v^*}{\partial \nu }\Big |_{\Gamma _{s}}\Big )\in H^{1/2+5/2}(\Omega _{s})=H^3(\Omega _{s})\). In (B.13), \(\dfrac{\partial h}{\partial \nu }|_{\Gamma _{s}}\) is explicitly obtained from (B.11) in terms of the data \(\{v_1^*,h^*\}\). Then (B.10), (B.11), (B.13) allow one to obtain an explicit formula of \({\mathcal {A}}^{-1}\).

Appendix C: Explicit Expression of \({\mathcal {A}}^{-1}\)

We now establish directly that, in fact, \(0\in \rho ({\mathcal {A}})\), the resolvent set of \({\mathcal {A}}\) and in fact obtain the explicit expression for \({\mathcal {A}}^{-1}\), as a bounded operator on \({\mathcal {L}}(\mathbf{H})\). Let \([v_1^*,v_2^*,h^*]\in \mathbf{H}\), we seek to solve \({\mathcal {A}}[v_1,v_2,h]=[v_1^*,v_2^*,h^*]\), or via (2.6),

figure k

The third equation yields the following elliptic problem in \(\Omega _{f}\):

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta h=h^*\in L_2(\Omega _f)\\ h|_{\Gamma _{f}}=0,\ \ h|_{\Gamma _{s}}=v_2|_{\Gamma _{s}}=v_1^*|_{\Gamma _{s}}\in H^{3/2}(\Gamma _{s}) \end{array}\right. };\ \ \ h=A^{-1}_D h^*+\widetilde{D}_fv_1^*\in H^2(\Omega _{f}),\nonumber \\ \end{aligned}$$
(C.2)

where \(A_Df=\Delta f\), \({\mathcal {D}}(A_D)=H^2(\Omega _{f})\cap H^1_0(\Omega _{f})\) while \(\widetilde{D}_f\) in the following Dirichlet map in \(\Omega _{f}\)

$$\begin{aligned}&\widetilde{D}_f:\ \ \ \widetilde{D}_fg=\psi \Leftrightarrow \{ \Delta \psi =0\ \hbox {in}\ \Omega _{f}, \psi =g\ \hbox {on}\ \Gamma _{s},\nonumber \\&\quad \psi =0\ \hbox {on}\ \Gamma _{f}\};\ \ \widetilde{D}_f: \ H^r(\Gamma _{s})\rightarrow H^{r+1/2}(\Omega _{f}) \end{aligned}$$
(C.3)

Eqt (C.1b), along with \(v_2=v_1^*\) in (C.1a) and the B.C. in (2.9a)–(2.9c) yield

figure l

With \(v_1^*\in H^2(\Omega _{s})\) and \(\dfrac{\partial h}{\partial \nu }\Big |_{\Gamma _{s}}\in H^{1/2}(\Gamma _{s})\) by (C.2), we have

$$\begin{aligned}&v_1^*|_{\Gamma _{s}}\in H^{3/2}(\Omega _{s});\ \dfrac{\partial ^2 v_1^*}{\partial \tau ^2}\Big |_{\Gamma _{s}}\in H^{-1/2}(\Gamma _{s});\ \dfrac{\partial v_1^* }{\partial \nu }\Big |_{\Gamma _{s}}\nonumber \\&\quad \in H^{1/2}(\Gamma _{s});\ \frac{\partial ^2}{\partial \tau ^2}\frac{\partial v_1^*}{\partial \nu }\Big |_{\Gamma _{s}}\in H^{-3/2}(\Gamma _{s}) \end{aligned}$$
(C.5)

and hence recalling (2.2a) and (2.2b), in (C.4b), (C.4c):

$$\begin{aligned} g_1= & {} -(1-\mu )B_1(v_1^*)=-(1-\mu )\Big \{-\dfrac{\partial ^2 v_1^*}{\partial \tau ^2}-c(\eta )\dfrac{\partial v_1^*}{\partial \nu }\Big \}_{\Gamma _{s}}\in H^{-1/2}(\Gamma _{s})\qquad \end{aligned}$$
(C.6)
$$\begin{aligned} g_2= & {} \Big [-(1-\mu )B_2(v_1^*)+v_1^*-\dfrac{\partial h}{\partial \nu }\Big ]_{\Gamma _{s}}\nonumber \\= & {} -(1-\mu )\Big \{\dfrac{\partial ^2}{\partial \tau ^2}\dfrac{\partial v_1^*}{\partial \nu }-\frac{\partial (div \nu )}{\partial \tau }\dfrac{\partial v_1^*}{\partial \tau }\Big \}_{\Gamma _{s}}\in H^{-3/2}(\Gamma _{s}) \end{aligned}$$
(C.7)

We rewrite problem (C.4) as

figure m

The operator

$$\begin{aligned} Q\psi =\Delta ^2\psi +\psi ,\ \ {\mathcal {D}}(Q)=\left\{ \psi \in H^4(\Omega _{s}):\ \Delta \psi |_{\Gamma _{s}}=\dfrac{\partial \Delta \psi }{\partial \nu }\Big |_{\Gamma _{s}}=0\right\} \end{aligned}$$
(C.9)

is non-negative self-adjoint, via Green’s second Theorem

$$\begin{aligned}&(Q\psi ,\tilde{\psi })=(\Delta ^2\psi ,\tilde{\psi })+(\psi ,\tilde{\psi })=(\psi ,\Delta ^2\tilde{\psi })+(\psi ,\tilde{\psi }),\ \ \ \psi ,\tilde{\psi }\in {\mathcal {D}}(Q)\qquad \quad \end{aligned}$$
(C.10)
$$\begin{aligned}&(Q\psi ,\psi )=\Vert \Delta \psi \Vert ^2+\Vert \psi \Vert ^2\ge 0,\ \ \ \psi \in {\mathcal {D}}(Q) \end{aligned}$$
(C.11)

so that \(Q\psi =0\) implies \(\psi \equiv 0\). The unique solution of problem (C.8) is

$$\begin{aligned}&\phi =v_1+v_1^*=Q^{-1}f+G_1g_1+G_2g_2\in H^2(\Omega _{s}) \end{aligned}$$
(C.12)
$$\begin{aligned}&Q^{-1}f\in H^4(\Omega _{s}),\quad G_1g_1\in H^{-1/2+5/2}(\Omega _{s}),\quad G_2g_2H^{-3/2+7/2}(\Omega _{s})\qquad \quad \end{aligned}$$
(C.13)

and hence \(v_1\in H^2(\Omega _{s})\) as desired. In conclusion: the formulas

$$\begin{aligned} v_1 =&-v_1^*+Q^{-1}[v_1^*-v_2^*]+G_1[-(1-\mu )B_1(v_1^*)|_{\Gamma _{s}}]\nonumber \\&+G_2[-(1-\mu )B_2(v_1^*)+v_1^*]-\dfrac{\partial }{\partial \nu }[A_D^{-1}h^*+\widetilde{D}_f v_1^*]\in H^2(\Omega _{s}) \end{aligned}$$
(C.14)
$$\begin{aligned} v_2&=v_1^*\in H^2(\Omega _{s}); \quad h=A_D^{-}h^*+\widetilde{D}_fv_1^*\in H^2(\Omega _{f}) \end{aligned}$$
(C.15)

provide the explicit expression for the map \({\mathcal {A}}^{-1}:\ [v_1^*,v_2^*,h^*]\in \mathbf{H}\rightarrow {\mathcal {D}}({\mathcal {A}})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triggiani, R. Heat–Viscoelastic Plate Interaction via Bending Moment and Shear Forces Operators: Analyticity, Spectral Analysis, Exponential Decay. Appl Math Optim 82, 755–797 (2020). https://doi.org/10.1007/s00245-018-9547-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9547-0

Keywords

Navigation