Skip to main content
Log in

A Heat–Viscoelastic Structure Interaction Model with Neumann and Dirichlet Boundary Control at the Interface: Optimal Regularity, Control Theoretic Implications

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider a heat–structure interaction model where the structure is subject to viscoelastic (strong) damping, and where a (boundary) control acts at the interface between the two media in Neumann-type or Dirichlet-type conditions. For the boundary (interface) homogeneous case, the free dynamics generates a s.c. contraction semigroup which, moreover, is analytic on the energy space and exponentially stable here Lasiecka et al. (Pure Appl Anal, to appear). If \({\mathcal {A}}\) is the free dynamics operator, and \({\mathcal {B}}_N\) is the (unbounded) control operator in the case of Neumann control acting at the interface, it is shown that \({\mathcal {A}}^{-\frac{1}{2}}{\mathcal {B}}_N\) is a bounded operator from the interface measured in the \(\mathbf{L}^2\)-norm to the energy space. We reduce this problem to finding a characterization, or at least a suitable subspace, of the domain of the square root \((-{\mathcal {A}})^{1/2}\), i.e., \({\mathcal {D}}((-{\mathcal {A}})^{1/2})\), where \({\mathcal {A}}\) has highly coupled boundary conditions at the interface. To this end, here we prove that \({\mathcal {D}}((-{\mathcal {A}})^{\frac{1}{2}})\equiv {\mathcal {D}}((-{\mathcal {A}}^*)^{\frac{1}{2}})\equiv V\), with the space V explicitly characterized also in terms of the surviving boundary conditions. Thus, this physical model provides an example of a matrix-valued operator with highly coupled boundary conditions at the interface, where the so called Kato problem has a positive answer. (The well-known sufficient condition Lions in J Math Soc JAPAN 14(2):233–241, 1962, Theorem 6.1 is not applicable.) After this result, some critical consequences follow for the model under study. We explicitly note here three of them: (i) optimal (parabolic-type) boundary \(\rightarrow \) interior regularity with boundary control at the interface; (ii) optimal boundary control theory for the corresponding quadratic cost problem; (iii) min–max game theory problem with control/disturbance acting at the interface. On the other hand, if \({\mathcal {B}}_D\) is the (unbounded) control operator in the case of Dirichlet control acting at the interface, it is then shown here that \({\mathcal {A}}^{-1}{\mathcal {B}}_D\) is a bounded operator from the interface measured this time in the \(\mathbf{H}^{\frac{1}{2}}\)-norm to the energy space. Similar consequences follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system. Georgian Math. J. 15(3), 403–437 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Avalos, G., Triggiani, R.: The coupled PDE-system arising in fluid-structure interaction. Part I: Explicit semigroup generator and its spectral properties (with G. Avalos). AMS Contemp. Math. Fluids Waves 440, 15–55 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avalos, G., Triggiani, R.: Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discret. Cont. Dyn. Syst. 22(4), 817–833 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baiocchi, C.: Un teorema di interpolazione; applicazioni ai problemi ai limiti per le equazioni a derivate parziali. Ann. Math. Pura Appl. 4(LXXIII), 235–252 (1966)

    MathSciNet  MATH  Google Scholar 

  5. Balakrishnan, A.V.: Fractional powers of closed operators and the semigroups generated by them. Pac. J. Math. 10, 419–437 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balakrishnan, A.V.: Applied Functional Analysis. Springer, New York (1981)

    MATH  Google Scholar 

  7. Balakrishnan A.V.: Boundary control of parabolic equations, L-Q-R theory, Proceedings of International Summer School, Control Institute Math & Mech. Academy of Sciences, GDR, Gerlin (1977)

  8. Bensoussan, A., Delfour, M.C., Da Prato, G., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Birkhauser, Boston (1992)

    MATH  Google Scholar 

  9. Canic, S., Mikelic, A., Tambaca, J.: A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation. Compte Rendus Mech. Acad. Sci. Paris 333(12), 867–883 (2005)

    MATH  Google Scholar 

  10. Chen, S., Triggiani, R.: Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems: the case \(\alpha = 1/2\) (with S. Chen). In: Proceedings of Seminar on Approximation and Optimization, University of Havana, Cuba (January 1987). Lecture notes in mathematics 1354, pp. 234–256. Springer (1988)

  11. Chen, S., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems: the case \(1/2 \le \alpha \le 1\)). Pac. J. Math. 136, 15–55 (1989)

    Article  MathSciNet  Google Scholar 

  12. Chen, S., Triggiani, R.: Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications. J. Differ. Eqns. 88, 279–293 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Analysis of a linear fluid-structure interaction problem. Discret. Dynam. Syst. 9(3), 633–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Simon, L.: Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. del Semin. Mat. Della Univ. di Padova 34, 205–223 (1964)

    MathSciNet  MATH  Google Scholar 

  15. Fujiwawa, D.: Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order. Proc. Jpn. Acad. 43, 82–86 (1967)

    Article  Google Scholar 

  16. Grisvard, P.: Caracterization de quelques espaces d’interpolation. Arch. Ration. Mech. Anal. 25, 40–63 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness for a free boundary fluid-structure model. J. Math. Phys. 53(11), 115624 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness and small data global existence for an interface damped free boundary fluid-structure model. Nonlinearity 27(3), 467–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T.: Fractional powers of dissipative operators. J. Math. Soc. Jpn. 13(3), 246–274 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasiecka, I.: Unified theory for abstract parabolic boundary problems—a semigroup approach. Appl. Math. Optim. 6, 31–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lasiecka, I., Lu, Y.: Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction. Semigroup Forum 82(1), 61–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lasiecka, I., Lu, Y.: Interface feedback control stabilization of a nonlinear fluid-structure interaction. Nonlinear Anal. 75(3), 1449–1460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lasiecka, I., Triggiani, R.: A cosine operator approach to modeling \(L-2\) boundary input hyperbolic equations. Appl. Math. Optimiz. 7, 35–83 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories I. In: Abstract Parabolic Systems Encyclopedia of Mathematics and its Applications Series, Cambridge University Press, Cambridge (2000)

  25. Lasiecka I., Triggiani R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories II, Abstract Hyperbolic Systems over a Finite Time Horizon Encyclopedia of Mathematics and Its Applications Series, Cambridge University Press, pp. 422 (2000)

  26. Lasiecka, I., Triggiani, R.: Domains of fractional powers of matrix-valued operators: a general approach. In: Arendt, W., Chill, R., Tomilov, Y. (eds.) Operator Theory Advances and Applications, pp. 297–310. Springer, New York (2015)

    Google Scholar 

  27. Lasiecka I., Triggiani R.: Heat-structure interaction with viscoelastic damping: analyticity with sharp analytic sector, exponential decay. Commun. Pure Appl. Anal., to appear

  28. Lebiedzik C., Triggaini R.: The optimal interior regularity for the critical case of a clamped thermoelastic system with point control revisited. In: Ruzhansky, M., Wirth, J. (eds.) Modern Aspects of the Theory of PDEs. Operator Theory: Advances and Applications, vol. 216, pp. 243–259, Birkhäuser/Springer, Basel (2011)

  29. Lions, J.L.: Quelques methods de resolution des problemes aux limits nonlinearies. Dunod, Paris (1969)

    Google Scholar 

  30. Lions, J.L.: Especes d’interpolation et domaines de puissances fractionnaires d’openateour. J. Math. Soc. JAPAN 14(2), 233–241 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions, J.L., Magenes, E.: Nonhomogeneous Boundary Value Propblems and Applications. Springer, New York (1972)

    Book  Google Scholar 

  32. Lu, Y.: Uniform Stabilization to equilibrium of a non-linear fluid-structure interaction model. NONRWA 25, 51–63 (2015)

    MATH  Google Scholar 

  33. Martinez, C., Sanz, M.: The Theory of Fractional Powers of Operators, p. 350. North-Holland, Elsevier (2001)

    Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  35. Triggiani, R.: Lecture notes in control and information sciences. A Cosine Operator Approach to Modeling Boundary Input Problems for Hyperbolic Systems, pp. 380–390. Springer, New York (1978)

    Google Scholar 

  36. R. Triggiani: A matrix-valued generator \({\cal A}\) with strong boundary coupling: a critical subspace of \(D(({-\cal A})^{\frac{1}{2}})\) and \(D(({-\cal A^*})^{\frac{1}{2}})\) and implications. Evolut. Equ. Control Theory. 5(1) (2016)

  37. Washburn, D.: A bound on the boundary input map for parabolic equations with application to time optimal control. SIAM J. Control 17, 652–671 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wish to thank the referee. The research of R. T. was partially supported by the National Science Foundation under grant DMS-1434941, and by the Air Force Office of Scientific Research under Grant FA9550-09-1-0459. R. T. thanks the Instytut Badan Systemowych PAN, Warsaw, Poland, for collaboration and hospitality under project UMO-2014/15/B/ST1/00067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Triggiani.

Additional information

In memory of A. V. Balakrishnan: long-time friend, mentor, collaborator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triggiani, R. A Heat–Viscoelastic Structure Interaction Model with Neumann and Dirichlet Boundary Control at the Interface: Optimal Regularity, Control Theoretic Implications. Appl Math Optim 73, 571–594 (2016). https://doi.org/10.1007/s00245-016-9348-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9348-2

Keywords

Navigation