Skip to main content
Log in

Nonlinear Elastic Plate in a Flow of Gas: Recent Results and Conjectures

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We give a survey of recent results on flow-structure interactions modeled by a modified wave equation coupled at an interface with equations of nonlinear elasticity. Both subsonic and supersonic flow velocities are considered. The focus of the discussion here is on the interesting mathematical aspects of physical phenomena occurring in aeroelasticity, such as flutter and divergence. This leads to a partial differential equation treatment of issues such as well-posedness of finite energy solutions, and long-time (asymptotic) behavior. The latter includes theory of asymptotic stability, convergence to equilibria, and to global attracting sets. We complete the discussion with several well known observations and conjectures based on experimental/numerical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that, as mentioned above, U is normalized by the speed of sound and thus is what engineers refer to as the Mach number.

  2. For definiteness and some simplification we concentrate on the clamped boundary conditions for the displacement u.

  3. Though, there are also calculations performed at the physical level which demonstrate that the effect of the flow can be destabilizing in certain regimes—see Remark 4.1 below.

  4. For the corresponding definitions and basic facts we refer to [22, 68].

  5. See also Remark 4.1 for other (physically motivated) expressions the “piston” term).

  6. The reference [14] contains a result for the behavior of solutions to the piston theoretic plate (with RHS given by \(p^*\) above) as \(U\rightarrow \infty \). The result, however, is only valid for arbitrarily small time intervals, and hence does not provide information about the behavior of solutions for arbitrary t.

  7. More complete analysis and details are given in [53].

  8. This can be seen from the results in Sect. 6.3.6 in [22] in the subsonic case.

References

  1. Balakrishnan, A.V., Iliff, K.W.: A continuum aeroelastic model for inviscid subsonic wing flutter. J. Aerosp. Eng. 20(3), 152–164 (2007)

    Article  Google Scholar 

  2. Balakrishnan, A.V.: Aeroelasticity-Continuum Theory. Springer, New York (2012)

    Book  MATH  Google Scholar 

  3. Balakrishnan, A.V.: Nonlinear aeroelasticity, continuum theory, flutter/divergence speed, plate wing model, free and moving boundaries. In: Lecture Notes in Pure and Applied Mathematics, vol. 252, pp. 223–244. Chapman & Hall, Boca Raton (2007)

  4. Balakrishnan, A.V., Shubov, M.A.: Asymptotic behaviour of the aeroelastic modes for an aircraft wing model in a subsonic air flow. In: Proceedings of Royal Society London Series A Mathematical, Physical and Engineering Sciences, vol. 460, pp. 1057–1091 (2004)

  5. Balakrishnan, A.V., Shubov, M., Peterson, C.: Spectral analysis of coupled Euler-Bernoulli and Timoshenko beam model. ZAMM Z. Angew. Math. Mech. 84(5), 291–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balakrishnan, A.V., Shubov, M.A.: Asymptotic and spectral properties of operator-valued functions generated by aircraft wing model. Math. Methods Appl. Sci. 27(3), 329–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bendiksen, O.O., Seber, G.: Fluid-structure interactions with both structural and fluid nonlinearities. J. Sound Vib. 315, 664–684 (2008)

    Article  Google Scholar 

  8. Bociu, L., Toundykov, D.: Attractors for non-dissipative irrotational von Karman plates with boundary damping. J. Differ. Equ. 253, 3568–3609 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bolotin, V.V.: Nonconservative Problems of Elastic Stability. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  10. Boutet de Monvel, A., Chueshov, I.: The problem of interaction of von Karman plate with subsonic flow gas. Math. Methods Appl. Sci. 22, 801–810 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boutet de Monvel, L., Chueshov, I.: Non-linear oscillations of a plate in a flow of gas. C.R. Acad. Sci. Paris, Ser. I 322, 1001–1006 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Boutet de Monvel, L., Chueshov, I.: Oscillation of von Karman’s plate in a potential flow of gas. Izv. Ross. Akad. Nauk 63, 219–244 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Boutet de Monvel, L., Chueshov, I., Rezounenko, A.: Long-time behaviour of strong solutions of retarded nonlinear PDEs. Commun. PDEs 22, 1453–1474 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chueshov, I.D.: Asymptotic behavior of the solutions of a problem on the aeroelastic oscillations of a shell in hypersonic limit. Teor. Funktsii Funktsional. Anal. i Prilozhen. 51: 137–141 (in Russian); tranaslation in. J. Math. Sci. 52(1990), 3545–3548 (1989)

  15. Chueshov, I.: On a certain system of equations with delay, occurring in aeroelasticity. Teor. Funktsii Funktsional. Anal. i Prilozhen. 54 (1990), pp. 123–130 (in Russian); translation in J. Soviet Math., 58 (1992), pp. 385–390

  16. Chueshov, I.: Dynamics of von Karman plate in a potential flow of gas: rigorous results and unsolved problems. In: Proceedings of the 16th IMACS World Congress, pp. 1–6. Lausanne (2000)

  17. Chueshov, I.: Remark on an elastic plate interacting with a gas in a semi-infnite tube: periodic. Evol. Equat. Contr. Theor. (2015, accepted). arXiv:1601.04644

  18. Chueshov, I.: Dynamics of Quasi-Stable Dissipative systems. Springer, New York (2015)

    Book  MATH  Google Scholar 

  19. Chueshov, I., Dowell, E., Lasiecka, I., Webster, J.T.: Mathematical aeroelasticity: a survey. Math. Eng. Sci. Aero. 7, 5–29 (2016)

    Google Scholar 

  20. Chueshov, I., Lasiecka, I.: Attractors for second-order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16, 469–512 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chueshov, I., Lasiecka, I.: Long-time behavior of second-order evolutions with nonlinear damping. Mem. AMS 195 (2008)

  22. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Wellposedness and Long Time Behavior Monographs. Springer, New York (2010)

    Book  MATH  Google Scholar 

  23. Chueshov, I., Lasiecka, I.: Generation of a semigroup and hidden regularity in nonlinear subsonic flow-structure interactions with absorbing boundary conditions. J. Abstr. Differ. Equ. Appl. 3, 1–27 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Chueshov, I., Lasiecka, I., Webster, J.T.: Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping. Commun. PDE 39, 1965–1997 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chueshov, I., Lasiecka, I.: Well-posedness and long time behavior in nonlinear dissipative hyperbolic-like evolutions with critical exponents. In: Alberti, G., et al. (eds.) Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, HCDTE Lecture Notes, Part I. AIMS on Applied Mathematics, pp. 1–96. AIMS, Springfield (2013)

    Google Scholar 

  26. Chueshov, I., Lasiecka, I., Webster, J.T.: Evolution semigroups for supersonic flow-plate interactions. J. Differ. Equ. 254, 1741–1773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chueshov, I., Lasiecka, I., Webster, J.T.: Flow-plate interactions: Well-posedness and long-time behavior, Discrete Contin. Dyn. Syst. Ser. S, Special Volume: New Developments. In: Mathematical Theory of Fluid Mechanics, vol. 7, pp. 925–965 (2014)

  28. Chueshov, I., Rezounenko, A.: Global attractors for a class of retarded quasilinear partial differential equations. C. R. Acad. Sci. Paris Ser. 1 321, 607–612 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Chueshov, I., Rezounenko, A.: Dynamics of second order in time evolution equations with state-dependent delay. Nonlinear Anal. A 123, 126–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chueshov, I., Rezounenko, A.: Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Commun. Pure Appl. Anal. 14, 1685–1704 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ciarlet, P., Rabier, P.: Les Equations de Von Karman. Springer, New York (1980)

    MATH  Google Scholar 

  32. Clancey, K.F.: On finite Hilbert transforms. Trans. AMS 212, 347–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Diekmann, O., van Gils, S., Lunel, S., Walther, H.-O.: Delay Equations. Springer, New York (1995)

    Book  MATH  Google Scholar 

  34. Dowell, E.: Nonlinear oscillations of a fluttering plate I. AIAA J. 4, 1267–1275 (1966)

  35. Dowell, E.: Nonlinear oscillations of a fluttering plate II. AIAA J. 5, 1857–1862 (1967)

  36. Dowell, E.: Panel flutter—a review of the aeroelastic stability of plates and shells. AIAA J. 8, 385–399 (1970)

    Article  Google Scholar 

  37. Dowell, E., Bendiksen, O., Edwards, J., Strganac, T.: Transonic Nonlinear Aeroelasticity. Encyclopedia of Aerospace Engineering. Wiley, New York (2010)

    Book  Google Scholar 

  38. Dowell, E.H., Bendiksen, O.: Panel Flutter. Encyclopedia of Aerospace Engineering. Wiley, New York (2010)

    Book  Google Scholar 

  39. Dowell, E., Bliss, D.B.: New look at unsteady supersonic potential flow aerodynamics and piston theory. AIAA J. 51(9), 2278–2281 (2013)

    Article  Google Scholar 

  40. Dowell, E.H.: Can solar sails flutter? AIAA J. 49, 1305–1307 (2011)

    Article  Google Scholar 

  41. Dowell, E.: Aeroelasticity of Plates and Shells. Nordhoff, Leyden (1975)

    MATH  Google Scholar 

  42. Dowell, E.: A Modern Course in Aeroelasticity. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  43. Dowell, E.H.: Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system. J. Sound Vib. 85, 333–344 (1982)

    Article  MathSciNet  Google Scholar 

  44. Hormander, L.: The Analysis of Linear Partial Differential Operators. Springer, New York (2009)

    Book  MATH  Google Scholar 

  45. Hodges, D.H., Pierce, G.A.: Introduction to Structural Dynamics and Aeroelasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  46. Gibbs, S.C., Dowell, E.H.: Membrane paradox for solar sails. AIAA J. 52, 2904–2906 (2014)

    Article  Google Scholar 

  47. Gibbs, S.C., Wang, I., Dowell, E.: Theory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial air flow. J. Fluids Struct. 34, 68–83 (2012)

    Article  Google Scholar 

  48. Gibbs, S.C., Wang, I., Dowell, E.: Stability of rectangular plates in subsonic flow with various boundary conditions. J. Aircr. 52, 429–451 (2015)

    Article  Google Scholar 

  49. Il’ushin, A.A.: The plane sections law in aerodynamics of large supersonic speeds. Prikladnaya Matem. Mech. 20(6), 733–755 (1956). (in Russian)

    Google Scholar 

  50. Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  51. Lasiecka, I.: Mathematical control theory of coupled PDE’s. In: CMBS-NSF Lecture Notes. SIAM (2002)

  52. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  53. Lasiecka, I., Webster, J.T.: Kutta-Joukowski flow conditions in flow-plate interactions: subsonic case. Nonlinear Anal. B 7, 171–191 (2014)

    Article  MATH  Google Scholar 

  54. Lasiecka, I., Webster, J.T.: Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Commun. Pure Appl. Math., 13, pp. 1935–1969 (2014), Updated version (May, 2015). http://arxiv.org/abs/1409.3308

  55. Lasiecka I., Webster, J.T.: Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow. Math. Anal. (2016, accepted). http://arxiv.org/abs/1506.05704

  56. Livne, E.: Future of airplane aeroelasticity. J. Aircr. 40, 1066–1092 (2003)

    Article  Google Scholar 

  57. Miyatake, S.: Mixed problem for hyperbolic equation of second order. J. Math. Kyoto Univ. 13, 435–487 (1973)

    MathSciNet  MATH  Google Scholar 

  58. Ryzhkova, I.: Stabilization of a von Karman plate in the presence of thermal effects in a subsonic potential flow of gas. J. Math. Anal. Appl. 294, 462–481 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ryzhkova, I.: Dynamics of a thermoelastic von Karman plate in a subsonic gas flow. Zeitschrift Ang. Math. Phys. 58, 246–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sakamoto, R.: Mixed problems for hyperbolic equations. J. Math. Kyoto Univ. 2, 349–373 (1970)

    MathSciNet  MATH  Google Scholar 

  61. Savare, G.: Regularity and perturbations results for mixed second order elliptic problems Comm. PDEs 22(5–6), 869–900 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  62. Shubov, M.: Asymptotical form of Possio integral equation in theoretical aeroelasticity. Asymptot. Anal. 64, 213–238 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Shubov, M.: Solvability of reduced Possio integral equation in theoretical aeroelasticity. Adv. Differ. Equ. 15, 801–828 (2010)

    MathSciNet  MATH  Google Scholar 

  64. Tang, D., Gibbs, S.C., Dowell, E.H.: Nonlinear aeroelastic analysis with inextensible plate theory including correlation with experiment. AIAA J. 53, 1299–1308 (2015)

    Article  Google Scholar 

  65. Tang, D.M., Yamamoto, H., Dowell, E.H.: Flutter and limit cycle oscillations of two dimensional panels in three-dimensional axial flow. J. Fluids Struct. 17, 225–242 (2003)

    Article  Google Scholar 

  66. Tang, D., Zhao, M., Dowell, E.H.: Inextensible beam and plate theory: computational analysis and comparison with experiment. J. Appl. Mech. 81(6), 061009 (2014)

    Article  Google Scholar 

  67. Taylor, M.E.: Pseudodifferential Operators. Springer, New York (1996)

    Book  Google Scholar 

  68. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  69. Tricomi, F.G.: Integral Equations. Interscience Publishers Inc., New York (1957)

    MATH  Google Scholar 

  70. Vedeneev, V.: Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds. J. Fluids Struct. 40, 366–372 (2013)

    Article  Google Scholar 

  71. Vedeneev, V.V.: Panel flutter at low supersonic speeds. J. Fluids Struct. 29, 79–96 (2012)

    Article  Google Scholar 

  72. Widom, H.: Integral Equations in \(L_p\). Trans. AMS 97, 131–160 (1960)

    MathSciNet  MATH  Google Scholar 

  73. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  74. Webster, J.T.: Weak and strong solutions of a nonlinear subsonic flow-structure interaction: semigroup approach. Nonlinear Anal. A 74, 3123–3136 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. Xie, D., Xu, M., Dai, H., Dowell, E.H.: Observation and evolution of chaos for a cantilever plate in supersonic flow. J. Fluids Struct. 50, 271–291 (2014)

    Article  Google Scholar 

  76. Xie, D., Xu, M., Dai, H., Dowell, E.H.: Proper orthogonal decomposition method for analysis of nonlinear panel flutter with thermal effects in supersonic flow. J. Sound Vib. 337, 263–283 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to dedicate this work to Professor A.V. Balakrishnan, whose pioneering and insightful work on flutter brought together engineers and mathematicians alike. E.H. Dowell was partially supported by the National Science Foundation with grant NSF-ECCS-1307778. I. Lasiecka was partially supported by the National Science Foundation with grant NSF-DMS-0606682 and the United States Air Force Office of Scientific Research with grant AFOSR-FA99550-9-1-0459. J.T. Webster was partially supported by National Science Foundation with Grant NSF-DMS-1504697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin T. Webster.

Additional information

In memory of A.V. Balakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chueshov, I., Dowell, E.H., Lasiecka, I. et al. Nonlinear Elastic Plate in a Flow of Gas: Recent Results and Conjectures. Appl Math Optim 73, 475–500 (2016). https://doi.org/10.1007/s00245-016-9349-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9349-1

Keywords

Navigation