Skip to main content

Advertisement

Log in

Source Apportionment of PM10-Bound Polycyclic Aromatic Hydrocarbons by Positive Matrix Factorization in Córdoba City, Argentina

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The composition and concentration of polycyclic aromatic hydrocarbons (PAHs) adsorbed on particles smaller than 10 microns (PM10) were analyzed in an urban area during a 2-year period from August 2011 to August 2013. Diagnostic ratios (DR) and positive matrix factorization (PMF) were employed to assess emission sources. To discount weather influence, a multiple linear regression model was generated and also a photodecomposition index was calculated for each sample. Despite the fact that mean PM10 levels showed a similar pattern all around the year, majority of PAHs showed higher concentrations during the cold than the warm period, indicating a strong seasonal variation. A 38% of PAHs variation could be explained by meteorological variables, with wind speed, wind direction, and dew point being the significant regressor variables in the model. The source apportionment of PAHs was performed using PMF although they are photosensitive compounds. The sampling period was separated in warm and cold seasons according to a photodecomposition index and cold period was used. Also, DR were calculated. DR as well as PMF analysis suggested that both gasoline and diesel vehicular emissions are the main PAHs emission sources in this urban area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MS (2015) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Akyüz M, Çabuk H (2010) Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408:5550–5558. doi:10.1016/j.scitotenv.2010.07.063

    Article  Google Scholar 

  • Amador-Muñoz O et al (2013) Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10: health risk and sources in southwest Mexico City. Atmos Res 122:199–212. doi:10.1016/j.atmosres.2012.10.003

    Article  Google Scholar 

  • Amarillo AC, Carreras HA (2012) The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine. Environ Pollut 170:217–221. doi:10.1016/j.envpol.2012.07.005

    Article  CAS  Google Scholar 

  • Amarillo AC, Tavera Busso I, Carreras H (2014) Exposure to polycyclic aromatic hydrocarbons in urban environments: health risk assessment by age groups. Environ Pollut 195:157–162. doi:10.1016/j.envpol.2014.08.027

    Article  CAS  Google Scholar 

  • Amodio M, Caselli M, de Gennaro G, Tutino M (2009) Particulate PAHs in two urban areas of southern Italy: impact of the sources, meteorological and background conditions on air quality. Environ Res 109:812–820. doi:10.1016/j.envres.2009.07.011

    Article  CAS  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108. doi:10.1016/j.atmosenv.2012.11.009

    Article  CAS  Google Scholar 

  • Bourotte C, Forti M-C, Taniguchi S, Bícego MC, Lotufo PA (2005) A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmos Environ 39:3799–3811. doi:10.1016/j.atmosenv.2005.02.054

    Article  CAS  Google Scholar 

  • Brits E, Schoeters G, Verschaeve L (2004) Genotoxicity of PM10 and extracted organics collected in an industrial, urban and rural area in Flanders, Belgium. Environ Res 96:109–118

    Article  CAS  Google Scholar 

  • Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738

    Article  CAS  Google Scholar 

  • Carreras HA, Pignata ML, Saldiva H (2008) Estudio de la relación entre los niveles de deposición atmosférica total y algunos indicadores de salud respiratoria en la ciudad de Córdoba. Arch Allergy Immunol Clin 39:90–92

    Google Scholar 

  • Carreras HA, Calderón-Segura ME, Gómez-Arroyo S, Murillo-Tovar MA, Amador-Muñoz O (2013) Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina. Environ Pollut 178:403–410. doi:10.1016/j.envpol.2013.03.016

    Article  CAS  Google Scholar 

  • Dachs J et al (2002) Processes driving the short-term variability of polycyclic aromatic hydrocarbons in the Baltimore and northern Chesapeake Bay atmosphere, USA. Atmos Environ 36:2281–2295

    Article  CAS  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2016) InfoStat versión. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Di Vaio P et al (2016) Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples. Atmos Environ 129:186–196. doi:10.1016/j.atmosenv.2016.01.020

    Article  Google Scholar 

  • EPA (2013) National ambient air quality standards for particulate matter, final rule. Fed Regist 78:3086–3287

    Google Scholar 

  • Esen F, Tasdemir Y, Vardar N (2008) Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmos Res 88:243–255

    Article  CAS  Google Scholar 

  • Fang G-C, Wu Y-S, Chen M-H, Ho T-T, Huang S-H, Rau J-Y (2004) Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002–2003. Atmos Environ 38:3385–3391

    Article  CAS  Google Scholar 

  • Fujita EM, Campbell DE, Arnott WP, Chow JC, Zielinska B (2007) Evaluations of the chemical mass balance method for determining contributions of gasoline and diesel exhaust to ambient carbonaceous aerosols. J Air Waste Manag Assoc 57:721–740

    Article  CAS  Google Scholar 

  • Gómez A, Henao E, Molina E, Molina F (2003) Evaluación de las partículas suspendidas totales (PST) y partículas respirables (PM10) en la zona de Guayabal, Medellín, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, pp 24–33

  • Guo H, Lee S, Ho K, Wang X, Zou S (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317

    Article  CAS  Google Scholar 

  • Hailwood M et al. (2001) Ambient air pollution by polycyclic aromatic hydrocarbons PAH. Position Paper Annexes

  • Hanedar A, Alp K, Kaynak B, Baek J, Avsar E, Odman MT (2011) Concentrations and sources of PAHs at three stations in Istanbul, Turkey. Atmos Res 99:391–399

    Article  CAS  Google Scholar 

  • Hanedar A, Alp K, Kaynak B, Avşar E (2014) Toxicity evaluation and source apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) at three stations in Istanbul, Turkey. Sci Total Environ 488:437–446

    Article  Google Scholar 

  • He C, Ge Y, Tan J, You K, Han X, Wang J (2010) Characteristics of polycyclic aromatic hydrocarbons emissions of diesel engine fueled with biodiesel and diesel. Fuel 89:2040–2046

    Article  CAS  Google Scholar 

  • He J, Fan S, Meng Q, Sun Y, Zhang J, Zu F (2014) Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: distributions, sources and meteorological influences. Atmos Environ 89:207–215

    Article  CAS  Google Scholar 

  • Hien TT, Nam PP, Yasuhiro S, Takayuki K, Norimichi T, Hiroshi B (2007) Comparison of particle-phase polycyclic aromatic hydrocarbons and their variability causes in the ambient air in Ho Chi Minh City, Vietnam and in Osaka, Japan, during 2005–2006. Sci Total Environ 382:70–81

    Article  CAS  Google Scholar 

  • Ho K, Ho SSH, Lee S, Cheng Y, Chow JC, Watson JG, Louie PKK, Tian L (2009) Emissions of gas-and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmos Environ 43(40):6343–6351

    Article  CAS  Google Scholar 

  • Hong H, Yin H, Wang X, Ye C (2007) Seasonal variation of PM10-bound PAHs in the atmosphere of Xiamen, China. Atmos Res 85:429–441

    Article  CAS  Google Scholar 

  • Hu J, Liu CQ, Zhang GP, Zhang YL (2012) Seasonal variation and source apportionment of PAHs in TSP in the atmosphere of Guiyang, southwest China. Atmos Res 118:271–279. doi:10.1016/j.atmosres.2012.07.015

    Article  CAS  Google Scholar 

  • IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Press, Lyon, France

  • Jamhari AA, Sahani M, Latif MT, Chan KM, Tan HS, Khan MF, Mohd Tahir N (2014) Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos Environ 86:16–27. doi:10.1016/j.atmosenv.2013.12.019

    Article  CAS  Google Scholar 

  • Katsoyiannis A, Terzi E, Cai Q-Y (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69:1337–1339

    Article  CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Kulkarni P, Venkataraman C (2000) Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmos Environ 34:2785–2790

    Article  CAS  Google Scholar 

  • Lee JY, Kim YP (2007) Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity. Atmos Chem Phys 7:3587–3596

    Article  CAS  Google Scholar 

  • Lee JY, Kim YP, Kang C-H (2011) Characteristics of the ambient particulate PAHs at Seoul, a mega city of northeast Asia in comparison with the characteristics of a background site. Atmos Res 99:50–56

    Article  CAS  Google Scholar 

  • Li J, Zhang G, Li XD, Qi SH, Liu GQ, Peng XZ (2006) Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci Total Environ 355:145–155. doi:10.1016/j.scitotenv.2005.02.042

    Article  CAS  Google Scholar 

  • Liu J et al (2013) Diurnal and nocturnal variations of PAHs in the Lhasa atmosphere, Tibetan Plateau: implication for local sources and the impact of atmospheric degradation processing. Atmos Res 124:34–43

    Article  CAS  Google Scholar 

  • Liu Y et al (2015) Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China. Atmos Environ 107:129–136

    Article  CAS  Google Scholar 

  • López ML, Ceppi S, Palancar GG, Olcese LE, Tirao G, Toselli BM (2011) Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos Environ 45:5450–5457. doi:10.1016/j.atmosenv.2011.07.003

    Article  Google Scholar 

  • Mantis J, Chaloulakou A, Samara C (2005) PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece. Chemosphere 59:593–604

    Article  CAS  Google Scholar 

  • Miller JN, Miller JC, Jiménez CM, Hornillos RI (2002) Estadística y quimiometría para química analítica, vol 4. Prentice Hall Cuarta edición, Madrid

    Google Scholar 

  • Nizzetto L et al (2008) PAHs in air and seawater along a North-South Atlantic transect: trends, processes and possible sources. Environ Sci Technol 42:1580–1585

    Article  CAS  Google Scholar 

  • Olcese LE, Toselli BM (2002) Some aspects of air pollution in Córdoba, Argentina. Atmos Environ 36:299–306. doi:10.1016/S1352-2310(01)00336-3

    Article  CAS  Google Scholar 

  • Omar NYM, Abas MRB, Ketuly KA, Tahir NM (2002) Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmos Environ 36:247–254

    Article  CAS  Google Scholar 

  • Paatero P (2000) User’s guide for positive matrix factorization programs PMF2 and PMF3, part 1: tutorial. University of Helsinki, Finland

  • Paatero P, Hopke PK (2003) Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta 490:277–289

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    Article  CAS  Google Scholar 

  • Park S-U, Kim J-G, Jeong M-J, Song B-J (2011) Source identification of atmospheric polycyclic aromatic hydrocarbons in industrial complex using diagnostic ratios and multivariate factor analysis. Arch Environ Contam Toxicol 60:576–589

    Article  CAS  Google Scholar 

  • Ravindra K, Wauters E, Tyagi SK, Mor S, Van Grieken R (2006) Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India. Environ Monit Assess 115:405–417

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Reff A, Eberly SI, Bhave PV (2007) Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. J Air Waste Manag Assoc 57:146–154

    Article  CAS  Google Scholar 

  • Rehwagen M, Müller A, Massolo L, Herbarth O, Ronco A (2005) Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Sci Total Environ 348:199–210

    Article  CAS  Google Scholar 

  • Roberto J, Lee W-Y, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163:946–958

    Article  Google Scholar 

  • Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricke A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosol 1. Polycyclic aromatic hydrocarbons and methodology for data visualization. Environ Sci Technol 40:7803–7810

    Article  CAS  Google Scholar 

  • Sbarato V, Sbarato D, Basan R, Manzo P, Ortega J, Campos M, Salort M (2000) Análisis y caracterización del material particulado atmosférico Ciudad de Córdoba, Argentina. Maestría en Gestión para la Integración Regional y Centro de Información y Documentación Regional Universidad Nacional de Córdoba

  • Sharma H, Jain V, Khan ZH (2007) Identification of polycyclic aromatic hydrocarbons (PAHs) in suspended particulate matter by synchronous fluorescence spectroscopic technique. Spectrochim Acta A Mol Biomol Spectrosc 68:43–49

    Article  Google Scholar 

  • Shen H et al (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424. doi:10.1021/es400857z

    Article  Google Scholar 

  • Sikalos TI, Paleologos EK, Karayannis MI (2002) Monitoring of time variation and effect of some meteorological parameters in polynuclear aromatic hydrocarbons in Ioannina, Greece with the aid of HPLC-fluorescence analysis. Talanta 58:497–510

    Article  CAS  Google Scholar 

  • Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195

    Article  CAS  Google Scholar 

  • Suman S, Sinha A, Tarafdar A (2016) Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci Total Environ 545:353–360

    Article  Google Scholar 

  • Tan J-H, Bi X-H, Duan J-C, Rahn KA, Sheng G-Y, Fu J-M (2006) Seasonal variation of particulate polycyclic aromatic hydrocarbons associated with PM10 in Guangzhou, China. Atmos Res 80:250–262

    Article  CAS  Google Scholar 

  • Tan J, Guo S, Ma Y, Duan J, Cheng Y, He K, Yang F (2011) Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmos Res 102:91–98

    Article  CAS  Google Scholar 

  • Tang N et al (2005) Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan Sea countries. Atmos Environ 39:5817–5826

    Article  CAS  Google Scholar 

  • Tasdemir Y, Esen F (2007) Urban air PAHs: concentrations, temporal changes and gas/particle partitioning at a traffic site in Turkey. Atmos Res 84:1–12

    Article  CAS  Google Scholar 

  • Teixeira EC, Agudelo-Castañeda DM, Fachel JMG, Leal KA, de Oliveira Garcia K, Wiegand F (2012) Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmos Res 118:390–403

    Article  CAS  Google Scholar 

  • Tham YWF, Takeda K, Sakugawa H (2008) Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan: influence of meteorological conditions and seasonal variations. Atmos Res 88:224–233. doi:10.1016/j.atmosres.2007.10.015

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Toro AR, Morales SRGE, Canales M, Gonzalez-Rojas C, Leiva GMA (2014) Inhaled and inspired particulates in Metropolitan Santiago Chile exceed air quality standards. Build Environ 79:115–123. doi:10.1016/j.buildenv.2014.05.004

    Article  Google Scholar 

  • Tsapakis M, Stephanou EG (2003) Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos Environ 37:4935–4944

    Article  CAS  Google Scholar 

  • Wu C, Larson TV, Wu S, Williamson J, Westberg HH, Liu L-JS (2007) Source apportionment of PM 2.5 and selected hazardous air pollutants in Seattle. Sci Total Environ 386:42–52

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819. doi:10.1016/j.atmosenv.2008.10.050

    Article  CAS  Google Scholar 

  • Zhao J, Zhang F, Xu L, Chen J, Xu Y (2011) Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Xiamen, China. Sci Total Environ 409:5318–5327. doi:10.1016/j.scitotenv.2011.08.024

    Article  CAS  Google Scholar 

  • Zhou J, Wang T, Huang Y, Mao T, Zhong N (2005) Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China. Chemosphere 61:792–799

    Article  CAS  Google Scholar 

  • Zhu L, Lu H, Chen S, Amagai T (2009) Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. J Hazard Mater 162:1165–1170

    Article  CAS  Google Scholar 

  • Zielinska B, Sagebiel J, Arnott W, Rogers C, Kelly K, Wagner D, Lighty J, Sarofim A, Palmer G (2004) Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environ Sci Technol 38:2557–2567

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Tecnológicas (Grant #11220090100999) and Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (Grant #30720130100458CB). The authors thank the National Weather Service for the data provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Amarillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarillo, A.C., Mateos, A.C. & Carreras, H. Source Apportionment of PM10-Bound Polycyclic Aromatic Hydrocarbons by Positive Matrix Factorization in Córdoba City, Argentina. Arch Environ Contam Toxicol 72, 380–390 (2017). https://doi.org/10.1007/s00244-017-0384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0384-y

Keywords

Navigation