Skip to main content
Log in

Multi-metals Measured at Sediment–Water Interface (SWI) by Diffusive Gradients in Thin Films (DGT) Technique for Geochemical Research

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Diffusive gradients in thin films (DGT) technique was used to determine pore water profile and to assess remobilization character of metals at sediment/water interface. The remobilization of Mn was due to redox reaction in profile, which engendered two large peaks: one with DGT concentration of 1355 µg L−1 at depth of −4.75 cm in sediment and the other with DGT concentration of 1040 µg L−1 at depth of −3.25 cm in sediment pore water. Fe reduction zone had a large peak of Fe (3209 µg L−1) at depth of −4.75 cm in sediment. Fe DGT-profile also indicated the little peaks and low values of dissolved Fe concentration in Fe-reduction/S-reduction boundary zone in sediment. Detailed correspondence of trace metals with Fe or Mn features in DGT-profiles suggested that their release is related to the reductive dissolution of Fe- or Mn-oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bender M, Martin W, Hess J, Sayles F, Ball L, Lambert C (1987) A whole core squeezer for interfacial pore-water sampling. Limnol Oceanogr 32:1214–1225

    Article  CAS  Google Scholar 

  • Bowen H (1979) Environmental chemistry of the elements. Academic Press, London, p 333

    Google Scholar 

  • Canfield DE, Raiswell R (1991) Pyrite formation and fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the Fossil record. Plenum Press, New York, pp 337–387

    Chapter  Google Scholar 

  • Claypool GE, Kaplan IR (1974) In: Kaplan IR (ed) The origin and distribution of methane in marine sediments: Natural gases in marine sediments. Plenum, New York, pp 99–139

    Chapter  Google Scholar 

  • Dahlqvist R, Zhang H, Ingri J, Davison W (2002) Performance of the diffusive gradients in thin films technique for measuring Ca and Mg in freshwater. Anal Chim Acta 460:247–256

    Article  CAS  Google Scholar 

  • Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 367:546–548

    Article  CAS  Google Scholar 

  • Fones GR, Davison W, Hamilton-Taylor J (2004) The fine-scale remobilization of metals in the surface sediment of the North-East Atlantic. Continental Shelf Res 24:1485–1504

    Article  Google Scholar 

  • Förstner U (2004) Traceability of sediment analysis. Trends Analytic Chem 23:217–236

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Gao Y, Baeyens W, De Galan S, Poffijn A, Leermakers M (2010) Mobility of radium and trace metals in sediments of the Winterbeek: application of sequential extraction and DGT techniques. Environ Poll 158:2439–2445

    Article  CAS  Google Scholar 

  • Hamilton-Taylor J, Davison W (1985) Redox-driven cycling of trace elements in lakes: Physics and Chemistry of Lakes. In: Lerman A, et al. (eds), Springer, pp 217–263

  • Hesslein RH (1976) An in situ sampler for close interval pore water studies. Limnol Oceanogr 21:912–914

    Article  CAS  Google Scholar 

  • Hyacinthe C, Anschultz P, Carbonel P, Jouanneau JM, Jorissen FJ (2001) Early diagenetic processes in the muddy sediments of the Bay of Biscay. Marine Geol 177:111–128

    Article  CAS  Google Scholar 

  • Jacobsen ST (1992) Chemical reaction and air change during the decomposition of organic matter. Res Conserv Recycl 6:529–539

    Google Scholar 

  • Jorgensen BB (1977) The sulphur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832

    Article  Google Scholar 

  • Kress N, Herut B, Galil BS (2004) Sewage sludge impact on sediment quality and benthic assemblages off the Mediterranean coast of Israel—a long-term study. Mar Environ Res 57:213–233

    Article  CAS  Google Scholar 

  • Krom MD, Mortimer RJG, Hayes SWP, Davies IM, Davison W, Zhang H (2002) In situ determination of dissolved iron production in recent marine sediments. Aquatic Sci 64:282–291

    Article  CAS  Google Scholar 

  • Levy JL, Zhang H, Davison W, Galceran J, Puy J (2012) Kinetic signatures of metals in the presence of Suwannee river fluvic acid. Environ Sci Technol 46:3335–3342

    Article  CAS  Google Scholar 

  • Li WJ, Zhao HJ, Teasdale PR, Jonh R, Wang FY (2005) Metal speciation measurement by diffusive gradients in thin films technique with different binding phases. Anal Chim Acta 533:193–202

    Article  CAS  Google Scholar 

  • Lin J, Liu CQ, Zhu ZZ (2008) Historical eutrophication in Lake Taihu: evidence from biogenic silica and total phosphorus accumulation in sediments from northern part of Lake Taihu. Environ Geol 55:1493–1500

    Article  Google Scholar 

  • Myers CR, Nealson KH (1993) Biological and chemical mechanisms of manganese reduction in aquatic and sediment systems: Transport and transformation of contaminations near the sediment-water interface. In: DePinto, JV, Lick W, Paul JF (eds), Lewis, pp 205–223

  • Naylor C, Davison W, Motelica-Heino M, Van den Berg GA, Van der Heijdt LM (2004) Simultaneous release of sulfide with Fe, Mn, Ni and Zn in marine harbor sediment measured using a combined metal/sulfide DGT probe. Sci Total Environ 328:275–286

    Article  CAS  Google Scholar 

  • Pempkowiak J, Sikora A, Biernacka E (1999) Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere 39:313–321

    Article  CAS  Google Scholar 

  • Pyzik AJ, Sommer SE (1981) Sedimentary iron monosulphides: kinetics and mechanism of formation. Geochim Cosmochim Acta 45:687–698

    Article  CAS  Google Scholar 

  • Rickard D (1997) Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 °C: the rate equation. Geochim Cosmochim Acta 61:115–134

    Article  CAS  Google Scholar 

  • Santschi P, Hohener P, Benoit G, Buchholtzten-Brink M (1990) Chemical processes at the sediment-water interface. Mar Chem 30:269–315

    Article  CAS  Google Scholar 

  • Shpard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sed Petrol 24:151–158

    Google Scholar 

  • Tankere-Muller S, Zhang H, Davison W, Finke N, Larsen O, Stahl H, Glud RN (2007) Fine scale remobilisation of Fe, Mn Co, Ni, Cu and Cd in contaminated marine sediment. Mar Chem 106:192–207

    Article  CAS  Google Scholar 

  • Tessier A (1992) Sorption of trace elements on natural particles in toxic environments: environmental particles. In: Buffle J, van Leeuwen HP (eds), Lewis, pp 425–453

  • The specification for marine monitoring, 2008. GB 17378.5-2007, The 5th part: Deposit analysis. Beijing, p 104

  • Vershinn AV, Rozanov AG (1982) On the problem of Eh measurement by the Pt electrode and estimation of oxdition-reduction conditions in marine media. Geokbimiya 1:121–128

    Google Scholar 

  • Watson PG, Frickers TE (1990) A multilevel, in situ pore water sampler for use in intertidal sediments and laboratory microcosms. Limnol Oceanogr 35(6):1381–1389

    Article  CAS  Google Scholar 

  • Wu ZH (2011) Metal pollution in surficial sediment of Liaodong bay and estuary in Yingkou and transference character at the sediment/water interface. Ph.D. Thesis, Beijing Normal University, Beijing

  • Wu ZH, Wang SR, Jiao LX, Wu FC (2014) The simultaneous measurement of phosphorus, sulfide and trace metals by ferrihydrite/AgI/chelex-100 DGT (diffusive gradients in thin films) probe at sediment/water interface (SWI) and remobilization assessment. Water Air Soil Poll 225:2188–2204

    Article  Google Scholar 

  • Wu ZH, Wang SR, Jiao LX (2015) Geochemical behavior of metals-sulfide-phosphorus at SWI (sediment/water interface) assessed by DGT (diffusive gradients in thin films) probes. J Geochem Explor. doi:10.1016/j.gexplo.2015.05.005

    Google Scholar 

  • Zhang H, Davison W, Miller S, Tych W (1995) In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in pore waters by DGT. Geochim Cosmochim Acta 59:4181–4192

    Article  CAS  Google Scholar 

  • Zhang H, Davison W, Knight B, McGrath S (1998) In situ measurement of solution concentrations and fluxes of trace metals in soils using DGT. Environ Sci Technol 32:704–710

    Article  CAS  Google Scholar 

  • Zhang H, Davison W, Mortimer RJG, Krom MD, Hayes PJ, Davies IM (2002) Localised remobilization of metals in a marine sediment. Sci Total Environ 296:175–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07202002), the National Key Basic Research and Development Plan of China (973 Program, 2004CB418502), and China Postdoctoral Science Foundation (2013M541002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengrui Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 487 kb)

Supplementary material 2 (DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Jiao, L., Wang, S. et al. Multi-metals Measured at Sediment–Water Interface (SWI) by Diffusive Gradients in Thin Films (DGT) Technique for Geochemical Research. Arch Environ Contam Toxicol 70, 429–437 (2016). https://doi.org/10.1007/s00244-015-0184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-015-0184-1

Keywords

Navigation