Skip to main content
Log in

Comparative Responses to Metal Oxide Nanoparticles in Marine Phytoplankton

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A series of experiments was undertaken on three different marine microalgae to compare the effect of two metal oxide nanoparticles (NPs) on different physiological responses to stress: zinc oxide (ZnO), a known toxic compound for microalgae, and the never before tested yttrium oxide (Y2O3). The effect of these potential pollutants was estimated for different physiological variables and temporal scales: Growth, carbon content, carbon-to-nitrogen (C:N) ratio, and chlorophyll fluorescence were evaluated in long-term assays, and reactive oxygen species (ROS) production was evaluated in a short-term assay. Population growth was the most susceptible variable to the acute toxic effects of both NPs as measured in terms of number of cells and of biomass. Although Phaeodactylum tricornutum and Alexandrium minutum were negatively affected by ZnO NPs, this effect was not detected in Tetraselmis suecica, in which cell growth was significantly decreased by Y2O3 NPs. Biomass per cell was negatively affected in the most toxic treatments in T. suecica but was positively affected in A. minutum. ZnO treatments induced a sharper decrease in chlorophyll fluorescence and higher ROS than did Y2O3 treatments. The pronounced differences observed in the responses between the species and the physiological variables tested highlight the importance of analyzing diverse groups of microalgae and various physiological levels to determine the potential effects of environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahner BA, Morel FMM (1995) Phytochelatin production in marine algae. 2. Induction by various metals. Limnol Oceanogr 40:658–665

    Article  CAS  Google Scholar 

  • Ahner BA, Wei L, Oleson JR, Ogura N (2002) Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar Ecol Prog Ser 232:93–103

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Bour G, Reinholdt A, Stepanov A, Keutgen C, Kreibig U (2001) Optical and electrical properties of hydrogenated yttrium nanoparticles. Eur Phys J D 16:219–223

    Article  CAS  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol 96:225–250

    Article  CAS  Google Scholar 

  • Croot PL, Moffett JW, Brand LE (2000) Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnol Oceanogr 45:619–627

    Article  CAS  Google Scholar 

  • Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154

    Article  CAS  Google Scholar 

  • Díaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadán S et al (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4:2025–2034

    Article  Google Scholar 

  • Dietz KJ, Krämer U, Baier M (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystem. Springer, Heidelberg, pp 73–97

    Chapter  Google Scholar 

  • Domingues N, Matos AR, da Silva JM, Cartaxana P (2012) Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. PLoS ONE 7:e38162

    Article  CAS  Google Scholar 

  • Ebenezer V, Nancharaiah YV, Venugopalan VP (2012) Chlorination-induced cellular damage and recovery in marine microalga, Chlorella salina. Chemosphere 89:1042–1047

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Gélabert A, Pokrovsky OS, Viers J, Schott J, Boudou A, Feurtet-Mazel A (2006) Interaction between zinc and freshwater and marine diatom species: surface complexation and Zn isotope fractionation. Geochim Cosmochim Acta 70:839–857

    Article  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

  • Hiltunen TJ, Barreiro A, Hairston NG Jr (2012) Mixotrophy and the toxicity of Ochromonas in a pelagic food web. Freshw Biol 57:2262–2271

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13:225–232

    Article  CAS  Google Scholar 

  • Hutchinson TC, Stokes PM (1975) Heavy metal toxicity and algal bioassays. Water Qual Parameter 573:320–343

    Article  CAS  Google Scholar 

  • Kawakami SK, Gledhill M, Achterberg EP (2006) Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress. J Phycol 42:975–998

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY et al (2009) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  Google Scholar 

  • Kottuparambil S, Shin W, Brown MT, Han T (2012) UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter. Aquat Toxicol 122:206–213

    Article  Google Scholar 

  • Leonardos N, Geider RJ (2005) Elemental and biochemical composition of Rhinomonas reticulate (Cryptophyta) in relation to light and nitrate-to-phosphate supply ratios. J Phycol 41:567–576

    Article  CAS  Google Scholar 

  • Liu S, Xu L, Zhang T, Ren G, Yang Z (2010) Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267:172–177

    Article  CAS  Google Scholar 

  • Liufu S, Xiao H, Li Y (2004) Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. Powder Technol 145:20–24

  • Lozano T, Rey M, Rojas E, Moya S, Fleddermann J, Estrela-Lopis I et al (2011) Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines. J Phys Conf Ser 304:012046

    Article  Google Scholar 

  • Macfie SM, Tarmohamed Y, Welbourn PM (1994) Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH. Arch Environ Contam Toxicol 27:454–458

    Article  CAS  Google Scholar 

  • Maeda S, Mizoguchi M, Ohki A, Takeshita T (1990) Bioaccumulation of zinc and cadmium in freshwater alga, Chlorella vulgaris. Part I. Toxicity and accumulation. Chemosphere 21:953–963

    Article  CAS  Google Scholar 

  • Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH et al (2010a) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822

    Article  CAS  Google Scholar 

  • Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010b) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE 5:e15196

    Article  CAS  Google Scholar 

  • Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharmacol Res 27:1746–1749

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ et al (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N et al (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • Neal AL (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Özkoc HB, Taylan ZS (2010) Assessment of various parameters of metal biology in marine microalgae Phaeodactylum tricornutum and Dunaliella tertiolecta. Fresenius Environ Bull 19(12):2981–2986

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Pérez-Rama M, Abalde Alonso J, Herrero López C, Torres Vaamonde E (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresource Technol 84:265–270

  • Rijstenbil JW, Derksen JWM, Gerringa LJA, Poortvliet TCW, Sandee A, Berg M et al (1994) Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii grown in continuous cultures with high and low zinc levels. Mar Biol 119:583–590

    Article  CAS  Google Scholar 

  • Rodriguez-Moya M, Li D, Alvarez PJJ (2007) Inactivation of virus in water by nanoparticles under UV irradiation. In: Annual Meeting, Salt Lake City, Utah

  • Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  CAS  Google Scholar 

  • Srinivasan R, Yogamalar R, Bose AC (2010) Structural and optical studies of yttrium oxide nanoparticles synthesized by co-precipitation method. Mater Res Bull 45:1165–1170

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1996) Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol Oceanogr 41:373–387

    Article  CAS  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Article  CAS  Google Scholar 

  • Tripathi BN, Gaur JP (2006) Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229:1–9

    Article  CAS  Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. Geophysical Monograph Series, vol 32. American Geophysical Union, Washington, DC, pp 99–110

    Google Scholar 

  • Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858

    Article  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    CAS  Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF Jr (2007) Aquatic environmental nanoparticles. J Environ Monit 9:1306–1316

    Article  CAS  Google Scholar 

  • Wong SWY, Leung PT, Djurišić AB, Leung KM (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Maëdler L, Gilbert B, Shi H et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  • Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Article  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tamara Lozano and Mercedes Peleteiro for advice on flow cytometry. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-NMP-SMALL-2) and (FP7/REGPOT-2012-2013.1) under grant agreements HINAMOX-228825 and BIOCAPS-316265, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Castro-Bugallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Bugallo, A., González-Fernández, Á., Guisande, C. et al. Comparative Responses to Metal Oxide Nanoparticles in Marine Phytoplankton. Arch Environ Contam Toxicol 67, 483–493 (2014). https://doi.org/10.1007/s00244-014-0044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0044-4

Keywords

Navigation