Skip to main content

Advertisement

Log in

Blood metabolites mediate the impact of lifestyle factors on the risk of urolithiasis: a multivariate, mediation Mendelian randomization study

  • Research
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Urolithiasis is closely linked to lifestyle factors. However, the causal relationship and underlying mechanisms remain unclear. This study aims to investigate the relationship between lifestyle factors and the onset of urolithiasis and explore potential blood metabolite mediators and their role in mediating this relationship. In this study, we selected single nucleotide polymorphisms (SNPs) as instrumental variables if they exhibited significant associations with our exposures in genome-wide association studies (GWAS) (p < 5.0 × 10-8). Summary data for urolithiasis came from the FinnGen database, including 8597 cases and 333,128 controls. We employed multiple MR analysis methods to assess causal links between genetically predicted lifestyle factors and urolithiasis, as well as the mediating role of blood metabolites. A series of sensitivity and pleiotropy analyses were also conducted. Our results show that cigarettes smoked per day (odds ratio [OR] = 1.159, 95% confidence interval [CI] = 1.004-1.338, p = 0.044) and alcohol intake frequency (OR = 1.286, 95% CI = 1.056-1.565, p = 0.012) were positively associated with increased risk of urolithiasis, while tea intake (OR = 0.473, 95% CI = 0.299-0.784, p = 0.001) was positively associated with reduced risk of urolithiasis. Mediation analysis identifies blood metabolites capable of mediating the causal relationship between cigarettes smoked per day, tea intake and urolithiasis. We have come to the conclusion that blood metabolites serve as potential causal mediators of urolithiasis, underscoring the importance of early lifestyle interventions and metabolite monitoring in the prevention of urolithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Stamatelou KK, Francis ME, Jones CA, Nyberg LM et al (2003) Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int. 5:1817–1823. https://doi.org/10.1046/j.1523-1755.2003.00917.x

    Article  Google Scholar 

  2. Skolarikos A, Straub M, Knoll T, Sarica K et al (2015) Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol. 4:750–763. https://doi.org/10.1016/j.eururo.2014.10.029

    Article  Google Scholar 

  3. Ruhayel Y, Tepeler A, Dabestani S, MacLennan S et al (2017) Tract sizes in miniaturized percutaneous nephrolithotomy: a systematic review from the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol 2:220–235. https://doi.org/10.1016/j.eururo.2017.01.046

    Article  Google Scholar 

  4. Alexander RT (2023) Do thiazides reduce the risk of kidney-stone recurrence? N Engl J Med 9:841–842. https://doi.org/10.1056/NEJMe2300120

    Article  Google Scholar 

  5. Peerapen P, Thongboonkerd V (2023) Kidney stone prevention. Adv Nutr 3:555–569. https://doi.org/10.1016/j.advnut.2023.03.002

    Article  CAS  Google Scholar 

  6. D’Ambrosio V, Ferraro PM, Lombardi G, Friso S et al (2022) Unravelling the complex relationship between diet and nephrolithiasis: the role of nutrigenomics and nutrigenetics. Nutrients. https://doi.org/10.3390/nu14234961

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yuan S, Larsson SC (2022) Coffee and caffeine consumption and risk of kidney stones: a Mendelian randomization study. Am J Kidney Dis 1:9-14.e11. https://doi.org/10.1053/j.ajkd.2021.04.018

    Article  CAS  Google Scholar 

  8. Zhang XZ, Lei XX, Jiang YL, Zhao LM et al (2023) Application of metabolomics in urolithiasis: the discovery and usage of succinate. Signal Transduct Target Ther. 1:41. https://doi.org/10.1038/s41392-023-01311-z

    Article  CAS  Google Scholar 

  9. Khamaysi A, Anbtawee-Jomaa S, Fremder M, Eini-Rider H et al (2019) Systemic succinate homeostasis and local succinate signaling affect blood pressure and modify risks for calcium oxalate lithogenesis. J Am Soc Nephrol. 3:381–392. https://doi.org/10.1681/asn.2018030277

    Article  CAS  Google Scholar 

  10. Griffin JL, Atherton H, Shockcor J, Atzori L (2011) Metabolomics as a tool for cardiac research. Nat Rev Cardiol 11:630–643. https://doi.org/10.1038/nrcardio.2011.138

    Article  CAS  Google Scholar 

  11. Onuh JO, Qiu H (2021) Metabolic profiling and metabolites fingerprints in human hypertension: discovery and potential. Metabolites. https://doi.org/10.3390/metabo11100687

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 7:451–459. https://doi.org/10.1038/nrm.2016.25

    Article  CAS  Google Scholar 

  13. Wang Y, Liu F, Sun L, Jia Y et al (2023) Association between human blood metabolome and the risk of breast cancer. Breast Cancer Res 1:9. https://doi.org/10.1186/s13058-023-01609-4

    Article  CAS  Google Scholar 

  14. Shin SY, Fauman EB, Petersen AK, Krumsiek J et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet. 6:543–550. https://doi.org/10.1038/ng.2982

    Article  CAS  Google Scholar 

  15. Kettunen J, Demirkan A, Würtz P, Draisma HH et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun. https://doi.org/10.1038/ncomms11122

    Article  PubMed  PubMed Central  Google Scholar 

  16. Michailidou K, Lindström S, Dennis J, Beesley J et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 7678:92–94. https://doi.org/10.1038/nature24284

    Article  ADS  CAS  Google Scholar 

  17. Ebrahim S, Davey Smith G (2008) Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Hum Genet 1:15–33. https://doi.org/10.1007/s00439-007-0448-6

    Article  Google Scholar 

  18. Sleiman PM, Grant SF (2010) Mendelian randomization in the era of genomewide association studies. Clin Chem 5:723–728. https://doi.org/10.1373/clinchem.2009.141564

    Article  CAS  Google Scholar 

  19. Smith GD, Ebrahim S (2003) ’Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 1:1–22. https://doi.org/10.1093/ije/dyg070

    Article  Google Scholar 

  20. Wang H, Fan J, Yu C, Guo Y et al (2021) Consumption of tea, alcohol, and fruits and risk of kidney stones: a prospective cohort study in 0.5 million Chinese adults. Nutrients. https://doi.org/10.3390/nu13041119

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu CC, Huang SP, Wu WJ, Chou YH et al (2009) The impact of cigarette smoking, alcohol drinking and betel quid chewing on the risk of calcium urolithiasis. Ann Epidemiol. 8:539–545. https://doi.org/10.1016/j.annepidem.2009.02.006

    Article  Google Scholar 

  22. Aizezi X, Xie L, Xie H, Li J et al (2022) Epidemiological and clinical characteristics of stone composition: a single-center retrospective study. Urolithiasis. 1:37–46. https://doi.org/10.1007/s00240-021-01274-2

    Article  CAS  Google Scholar 

  23. Turney BW, Appleby PN, Reynard JM, Noble JG et al (2014) Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol 5:363–369. https://doi.org/10.1007/s10654-014-9904-5

    Article  CAS  Google Scholar 

  24. Littlejohns TJ, Neal NL, Bradbury KE, Heers H et al (2020) Fluid intake and dietary factors and the risk of incident kidney stones in UK biobank: a population-based prospective cohort study. Eur Urol Focus. 4:752–761. https://doi.org/10.1016/j.euf.2019.05.002

    Article  Google Scholar 

  25. Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA. 19:1925–1926. https://doi.org/10.1001/jama.2017.17219

    Article  Google Scholar 

  26. Abecasis GR, Altshuler D, Auton A, Brooks LD et al (2010) A map of human genome variation from population-scale sequencing. Nature. 7319:1061–1073. https://doi.org/10.1038/nature09534

    Article  CAS  Google Scholar 

  27. Staley JR, Blackshaw J, Kamat MA, Ellis S et al (2016) PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics. 20:3207–3209. https://doi.org/10.1093/bioinformatics/btw373

    Article  CAS  Google Scholar 

  28. Kamat MA, Blackshaw JA, Young R, Surendran P et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 22:4851–4853. https://doi.org/10.1093/bioinformatics/btz469

    Article  CAS  Google Scholar 

  29. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 5:693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  Google Scholar 

  30. Liu M, Jiang Y, Wedow R, Li Y et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 2:237–244. https://doi.org/10.1038/s41588-018-0307-5

    Article  CAS  Google Scholar 

  31. Sudlow C, Gallacher J, Allen N, Beral V et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 3:e1001779. https://doi.org/10.1371/journal.pmed.1001779

    Article  Google Scholar 

  32. Julkunen H, Cichońska A, Tiainen M, Koskela H et al (2023) Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat Commun. 1:604. https://doi.org/10.1038/s41467-023-36231-7

    Article  ADS  CAS  Google Scholar 

  33. Kurki MI, Karjalainen J, Palta P, Sipilä TP et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 7944:508–518. https://doi.org/10.1038/s41586-022-05473-8

    Article  ADS  CAS  Google Scholar 

  34. Cai J, Wei Z, Chen M, He L et al (2022) Socioeconomic status, individual behaviors and risk for mental disorders: a Mendelian randomization study. Eur Psychiatry 1:e28. https://doi.org/10.1192/j.eurpsy.2022.18

    Article  Google Scholar 

  35. Liu N, Tan JS, Liu L, Li H et al (2023) Roles of obesity in mediating the causal effect of attention-deficit/hyperactivity disorder on diabetes. Epidemiol Psychiatr Sci. https://doi.org/10.1017/s2045796023000173

    Article  PubMed  PubMed Central  Google Scholar 

  36. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 5:377–389. https://doi.org/10.1007/s10654-017-0255-x

    Article  Google Scholar 

  37. VanderWeele TJ (2016) Mediation analysis: a practitioner’s guide. Annu Rev Public Health. https://doi.org/10.1146/annurev-publhealth-032315-021402

    Article  PubMed  Google Scholar 

  38. Relton CL, Davey Smith G (2012) Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 1:161–176. https://doi.org/10.1093/ije/dyr233

    Article  Google Scholar 

  39. Carter AR, Sanderson E, Hammerton G, Richmond RC et al (2021) Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol 5:465–478. https://doi.org/10.1007/s10654-021-00757-1

    Article  Google Scholar 

  40. MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol. https://doi.org/10.1146/annurev.psych.58.110405.085542

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Ye C, Kong L, Zheng J et al (2023) Independent associations of education, intelligence, and cognition with hypertension and the mediating effects of cardiometabolic risk factors: a Mendelian randomization study. Hypertension 1:192–203. https://doi.org/10.1161/hypertensionaha.122.20286

    Article  Google Scholar 

  42. Lee YH, Huang WC, Lu CM, Tsai JY et al (2003) Stone recurrence predictive score (SRPS) for patients with calcium oxalate stones. J Urol 2(Pt 1):404–407. https://doi.org/10.1097/01.ju.0000072365.22948.30

    Article  Google Scholar 

  43. Słojewski M, Czerny B, Safranow K, Droździk M et al (2009) Does smoking have any effect on urinary stone composition and the distribution of trace elements in urine and stones? Urol Res 6:317–322. https://doi.org/10.1007/s00240-009-0221-5

    Article  CAS  Google Scholar 

  44. Marić I, Kizivat T, Smolić M, Smolić R et al (2019) Lifestyle risk factors and bone mass in recurrent stone-forming patients: a cross-sectional study in 144 subjects. Acta Clin Croat. 3:439–445. https://doi.org/10.20471/acc.2019.58.03.06

    Article  Google Scholar 

  45. Hamano S, Nakatsu H, Suzuki N, Tomioka S et al (2005) Kidney stone disease and risk factors for coronary heart disease. Int J Urol 10:859–863. https://doi.org/10.1111/j.1442-2042.2005.01160.x

    Article  Google Scholar 

  46. Soueidan M, Bartlett SJ, Noureldin YA, Andersen RE et al (2015) Leisure time physical activity, smoking and risk of recent symptomatic urolithiasis: survey of stone clinic patients. Can Urol Assoc J 7–8:257–262. https://doi.org/10.5489/cuaj.2879

    Article  Google Scholar 

  47. Prié D, Huart V, Bakouh N, Planelles G et al (2002) Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 13:983–991. https://doi.org/10.1056/NEJMoa020028

    Article  Google Scholar 

  48. Hou JW, Wang TR (1995) Methylmalonic aciduria and urolithiasis in a Chinese boy with untreated phenylketonuria. J Inherit Metab Dis 1:79–80. https://doi.org/10.1007/bf00711379

    Article  Google Scholar 

  49. Goldfarb DS, Fischer ME, Keich Y, Goldberg J (2005) A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int. 3:1053–1061. https://doi.org/10.1111/j.1523-1755.2005.00170.x

    Article  Google Scholar 

  50. Haghighatdoost F, Sadeghian R, Abbasi B (2021) The associations between tea and coffee drinking and risk of calcium-oxalate renal stones. Plant Foods Hum Nutr 4:516–522. https://doi.org/10.1007/s11130-021-00933-4

    Article  CAS  Google Scholar 

  51. Liu D, Wang J, Chen Y, Liu F et al (2023) Tea intake and risk of kidney stones: a mendelian randomization study. Nutrition. https://doi.org/10.1016/j.nut.2022.111919

    Article  PubMed  Google Scholar 

  52. Ferraro PM, Taylor EN, Gambaro G, Curhan GC (2013) Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol 8:1389–1395. https://doi.org/10.2215/cjn.11661112

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim SY, Yoo DM, Bang WJ, Choi HG (2022) Obesity is positively associated and alcohol intake is negatively associated with nephrolithiasis. Nutrients. https://doi.org/10.3390/nu14194122

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang S, Tan W, Wei B, Gu C et al (2023) Association between alcohol and urolithiasis: a mendelian randomization study. Urolithiasis 1:103. https://doi.org/10.1007/s00240-023-01472-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kettunen et al, FinnGen consortium, the UK Biobank and Nightingale Health Ltd for providing GWAS data.

Funding

This study was supported by the Key Research and Development Program of Hubei province (2023BCB001), the Translational Medicine and Multidisciplinary Research Project of Zhongnan Hospital of Wuhan University (ZNJC202217, ZNJC202232).

Author information

Authors and Affiliations

Authors

Contributions

XW, SL and TL: were responsible for the concept and design. ZL and HW: collected the data and the data analysis. ZL: interpreted the results and wrote the manuscript. XW, SL, TL, HW and XT: assisted in revising the manuscript. All authors have read and approved this manuscript.

Corresponding authors

Correspondence to Tongzu Liu, Sheng Li or Xinghuan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 170 KB)

Supplementary file2 (DOC 1108 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wei, H., Tang, X. et al. Blood metabolites mediate the impact of lifestyle factors on the risk of urolithiasis: a multivariate, mediation Mendelian randomization study. Urolithiasis 52, 44 (2024). https://doi.org/10.1007/s00240-024-01545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-024-01545-8

Keywords

Navigation