Skip to main content
Log in

Induction of enteric oxalate secretion by Oxalobacter formigenes in mice does not require the presence of either apical oxalate transport proteins Slc26A3 or Slc26A6

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Oxalobacter sp. promotion of enteric oxalate excretion, correlating with reductions in urinary oxalate excretion, was previously reported in rats and mice, but the mechanistic basis for this affect has not been described. The main objective of the present study was to determine whether the apical oxalate transport proteins, PAT1 (slc26a6) and DRA (slc26a3), are involved in mediating the Oxalobacter-induced net secretory flux across colonized mouse cecum and distal colon. We measured unidirectional and net fluxes of oxalate across tissues removed from colonized PAT1 and DRA knockout (KO) mice and also across two double knockout (dKO) mouse models with primary hyperoxaluria, type 1 (i.e., deficient in alanine-glyoxylate aminotransferase; AGT KO), including PAT1/AGT dKO and DRA/AGT dKO mice compared to non-colonized mice. In addition, urinary oxalate excretion was measured before and after the colonization procedure. The results demonstrate that Oxalobacter can induce enteric oxalate excretion in the absence of either apical oxalate transporter and urinary oxalate excretion was reduced in all colonized genotypes fed a 1.5% oxalate-supplemented diet. We conclude that there are other, as yet unidentified, oxalate transporters involved in mediating the directional changes in oxalate transport across the Oxalobacter-colonized mouse large intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515

    Article  CAS  Google Scholar 

  2. Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M, Karrar E, Roy-Chowdhury J, Musch M, Asplin J, Chang E, Hassan H (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28:876–887

    Article  CAS  Google Scholar 

  3. Arvans D, Musch M, Chang E, Hassan H, Cheng M (2012) Oxalobacter formigenes conditioned medium stimulates oxalate transport by human intestinal cells. J Investig Med 60:738

    Google Scholar 

  4. Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, Pirovano F, Centi C, Ulisse S, Famularo G, De Simone C (2001) Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int 60:1097–1105

    Article  CAS  Google Scholar 

  5. Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D (2010) Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Investig 120:706–712

    Article  CAS  Google Scholar 

  6. Freel RW, Hatch M, Green M, Soleimani M (2006) Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290:G719–G728

    Article  CAS  Google Scholar 

  7. Freel RW, Whittamore JM, Hatch M (2013) Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. Am J Physiol Gastrointest Liver Physiol 305:G520–G527

    Article  CAS  Google Scholar 

  8. Green ML, Hatch M, Freel RW (2005) Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol 289:F536–F543

    Article  CAS  Google Scholar 

  9. Hassan H, Arvans D, Cheng M, Musch M, Chang E (2011) Oxalobacter formigenes conditioned medium stimulates oxalate transport by human intestinal cells. J Am Soc Nephrol 22:383A

    Google Scholar 

  10. Hatch M (2017) Gut microbiota and oxalate homeostasis. Ann Transl Med 5:36

    Article  Google Scholar 

  11. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW (2006) Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69:691–698

    Article  CAS  Google Scholar 

  12. Hatch M, Freel RW (2013) A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 41:379–384

    Article  CAS  Google Scholar 

  13. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300:G461–G469

    Article  CAS  Google Scholar 

  14. Heneghan JF, Akhavein A, Salas MJ, Shmukler BE, Karniski LP, Vandorpe DH, Alper SL (2010) Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol Cell Physiol 298:C1363–C1375

    Article  CAS  Google Scholar 

  15. Heneghan JF, Alper SL (2011) This, too, shall pass–like a kidney stone: a possible path to prophylaxis of nephrolithiasis? Focus on “Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells”. Am J Physiol Cell Physiol 302:C18–C20

    Article  Google Scholar 

  16. Hoppe B, Beck B, Gatter N, von Unruh G, Tischer A, Hesse A, Laube N, Kaul P, Sidhu H (2006) Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int 70:1305–1311

    Article  CAS  Google Scholar 

  17. Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26:3609–3615

    Article  Google Scholar 

  18. Hoppe B, von Unruh G, Laube N, Hesse A, Sidhu H (2005) Oxalate degrading bacteria: new treatment option for patients with primary and secondary hyperoxaluria? Urol Res 33:372–375

    Article  Google Scholar 

  19. Jiang J, Knight J, Easter LH, Neiberg R, Holmes RP, Assimos DG (2011) Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J Urol 186:135–139

    Article  CAS  Google Scholar 

  20. Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38:474–478

    Article  CAS  Google Scholar 

  21. Klimesova K, Whittamore JM, Hatch M (2015) Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 43:107–117

    Article  CAS  Google Scholar 

  22. Ko N, Knauf F, Jiang Z, Markovich D, Aronson PS (2012) Sat1 is dispensable for active oxalate secretion in mouse duodenum. Am J Physiol Cell Physiol 303:C52–C57

    Article  CAS  Google Scholar 

  23. Kwak C, Kim HK, Kim EC, Choi MS, Kim HH (2003) Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis. Eur Urol 44:475–481

    Article  CAS  Google Scholar 

  24. Liebman M, Al-Wahsh IA (2011) Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr 2:254–260

    Article  CAS  Google Scholar 

  25. Lieske JC, Goldfarb DS, De Simone C, Regnier C (2005) Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int 68:1244–1249

    Article  CAS  Google Scholar 

  26. Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, Goldfarb DS (2010) Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int 78:1178–1185

    Article  CAS  Google Scholar 

  27. Markovich D (2012) Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. Physiology (Bethesda) 27:7–14

    CAS  Google Scholar 

  28. Mikami K, Akakura K, Takei K, Ueda T, Mizoguchi K, Noda M, Miyake M, Ito H (2003) Association of absence of intestinal oxalate degrading bacteria with urinary calcium oxalate stone formation. Int J Urol 10:293–296

    Article  Google Scholar 

  29. Milliner D, Hoppe B, Groothoff J (2018) A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46:313–323

    Article  CAS  Google Scholar 

  30. Mittal RD, Kumar R, Mittal B, Prasad R, Bhandari M (2003) Stone composition, metabolic profile and the presence of the gut-inhabiting bacterium Oxalobacter formigenes as risk factors for renal stone formation. Med Princ Pract 12:208–213

    Article  CAS  Google Scholar 

  31. Neuhaus TJ, Belzer T, Blau N, Hoppe B, Sidhu H, Leumann E (2000) Urinary oxalate excretion in urolithiasis and nephrocalcinosis. Arch Dis Child 82:322–326

    Article  CAS  Google Scholar 

  32. Ohana E, Shcheynikov N, Park M, Muallem S (2012) Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SOFormula/OH–/Cl– exchanger regulated by extracellular Cl–. J Biol Chem 287:5122–5132

    Article  CAS  Google Scholar 

  33. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A (2011) Hyperoxaluria: a gut-kidney axis? Kidney Int 80:1146–1158

    Article  CAS  Google Scholar 

  34. Satoh H, Susaki M, Shukunami C, Iyama K, Negoro T, Hiraki Y (1998) Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J Biol Chem 273:12307–12315

    Article  CAS  Google Scholar 

  35. Sidhu H, Schmidt ME, Cornelius JG, Thamilselvan S, Khan SR, Hesse A, Peck AB (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10(Suppl 14):S334–S340

    CAS  PubMed  Google Scholar 

  36. Siener R, Bade DJ, Hesse A, Hoppe B (2013) Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J Transl Med 11:306

    Article  Google Scholar 

  37. Siener R, Bangen U, Sidhu H, Honow R, von Unruh G, Hesse A (2013) The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83:1144–1149

    Article  CAS  Google Scholar 

  38. Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17:173–176

    Article  Google Scholar 

  39. Whittamore JM, Hatch M (2017) The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 45:89–108

    Article  CAS  Google Scholar 

  40. Whittamore JM, Stephens CE, Hatch M (2018) Absence of the sulfate transporter SAT-1 (Slc26a1) has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol 316:G82–G94 (E-Pub ahead of print)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Shreya Mishra, Heran Getachew, and Tisha Van Pelt for excellent technical assistance and animal husbandry.

Funding

This work was supported by NIH Grant Nos. DK088892 and DK081624 in addition to a Grant from the Oxalosis and Hyperoxaluria Foundation.

Author information

Authors and Affiliations

Authors

Contributions

MH is responsible for conception and design of the research and MH performed the flux experiments. MH analyzed the data and interpreted the results and MH drafted the manuscript.

Corresponding author

Correspondence to Marguerite Hatch.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted. This article does not contain any studies with human participants performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatch, M. Induction of enteric oxalate secretion by Oxalobacter formigenes in mice does not require the presence of either apical oxalate transport proteins Slc26A3 or Slc26A6. Urolithiasis 48, 1–8 (2020). https://doi.org/10.1007/s00240-019-01144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-019-01144-y

Keywords

Navigation