Skip to main content
Log in

Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Hypoxia at deep-sea hydrothermal vents represents one of the most basic challenges for metazoans, which then requires specific adaptations to acquire oxygen to meet their metabolic needs. Hydrothermal vent scale-worms (Polychaeta; Polynoidae) express large amounts of extracellular single- and multi-domain hemoglobins, in contrast with their shallow-water relatives that only possess intracellular globins in their nervous system (neuroglobins). We sequenced the gene encoding the single-domain (SD) globin from nine species of polynoids found in various vent and deep-sea reduced microhabitats (and associated constraints) to determine if the Polynoidae SD globins have been the targets of diversifying selection. Although extracellular, all the SD globins (and multi-domain ones) form a monophyletic clade that clusters within the intracellular globin group of other annelids, indicating that these hemoglobins have evolved from an intracellular myoglobin-like form. Positive selection could not be detected at the major ecological changes that the colonization of the deep-sea and hydrothermal vents represents. This suggests that no major structural modification was necessary to allow the globins to function under these conditions. The mere expression of these globins extracellularly may have been sufficiently advantageous for the polynoids living in hypoxic hydrothermal vents. Among hydrothermal vent species, positively selected amino acids were only detected in the phylogenetic lineage leading to the two mussel-commensal species (Branchipolynoe). In this lineage, the multiplicity of hemoglobins could have lessened the selective pressure on the SD hemoglobin, allowing the acquisition of novel functions by positive Darwinian selection. Conversely, the colonization of hotter environments (species of Branchinotogluma) does not seem to have required additional modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anisimova M (2003) Detecting positive selection in the protein coding genes. Dissertation, University College London

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Arp AJ, Childress JJ (1983) Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science 219:295–297

    Article  CAS  PubMed  Google Scholar 

  • Bailly X, Jollivet D, Vanin S, Deutsch J, Zal F, Lallier F, Toulmond A (2002) Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Mol Biol Evol 19:1421–1433

    Article  CAS  PubMed  Google Scholar 

  • Bailly X, Leroy R, Carney S, Collin O, Zal F, Toulmond A, Jollivet D (2003) The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection. PNAS 100:5885–5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252-W258

    Article  PubMed Central  Google Scholar 

  • Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modelling using SWISS-MODEL Workspace. Nat Protoc 4:1

    Article  CAS  PubMed  Google Scholar 

  • Carrico RJ, Blumberg WE, Peisach J (1978) The reversible binding of oxygen to sulfhemoglobin. J Biol Chem 253:7212–7215

    CAS  PubMed  Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr Mar Biol - An Annual Review 30:337–441

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport HE (1949) Ascaris Haemoglobin as an indicator of the oxygen produced by isolated chloroplasts. P R Soc London B 136:281–290

    Article  CAS  Google Scholar 

  • De Baere I, Perutz MF, Kiger L, Marden MC, Poyart C (1994) Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. P Natl Acad Sci USA 91:1594–1597

    Article  Google Scholar 

  • DeLano WL (2008) The PyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA

    Google Scholar 

  • Dewilde S, Blaxter M, Hauwaert M-L, Vanfleteren J, Esmans EL, Marden M, Griffon N, Moens L (1996) Globin and Globin Structure of the Nerve Myoglobin of Aphrodite aculeata. J Biol Chem 271:19865–19870

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson QH, Smith MH (1965) Rates of Reaction of Ascaris Haemoglobins with Ligands. P Roy Soc Lond B Bio163:206–214

    Article  Google Scholar 

  • Goodman M, Pedwaydon J, Czelusniak J, Suzuki T, Gotoh T, Moens L, Shishikura F, Walz D, Vinogradov SN (1988) An evolutionary tree for invertebrate globin sequences. J Mol Evol 27:236–249

    Article  CAS  PubMed  Google Scholar 

  • Guidon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  • Hourdez S, Lallier F (2007) Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates. Rev Environ Sci Biotechnol 6:143–159

    Article  CAS  Google Scholar 

  • Hourdez S, Weber RE (2005) Molecular and functional adaptations in deep-sea hemoglobins. J Inorg Biochem 99:130–141

    Article  CAS  PubMed  Google Scholar 

  • Hourdez S, Lallier FH, Green BN, Toulmond A (1999a) Hemoglobins from deep-sea hydrothermal vent scale-worms of the genus Branchipolynoe: A new type of quaternary structure. Proteins 34:427–434

    Article  CAS  PubMed  Google Scholar 

  • Hourdez S, Lallier FH, Martin-Jézéquel V, Weber RE, Toulmond A (1999b) Characterization and functional properties of the extracellular coelomic hemoglobins from the deep-sea, hydrothermal vent scale-worm Branchipolynoe symmytilida. Proteins 34:435–442

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jollivet D, Empis A, Baker MC, Hourdez S, Comtet T, Jouin-Toulmond C, Desbruyères D, Tyler PA (2000) Reproductive Biology, Sexual Dimorphism, and Population Structure of the Deep Sea Hydrothermal Vent Scale-Worm, Branchipolynoe Seepensis (Polychaeta: Polynoidae). J Mar Biol 80:55–68

    Article  Google Scholar 

  • Koshi JM, Goldstein RA (1996) Probabilistic Reconstruction of Ancestral Protein Sequences. J Mol Evol 42:313–320

    Article  CAS  PubMed  Google Scholar 

  • Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High Pressure Effects on Protein Structure and Function. Proteins: Structure, Function Genetics 24:84–91

    Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norlinder E, Nygren A, Wiklund H, Pleijel F (2012) Phylogeny of scale-worms (Aphroditiformia, Annelida), assessed from 18SrRNA, 28SrRNA, 16SrRNA, mitochondrial cytochrome c oxidase subunit I (COI), and morphology. Mol Phylogenet Evol 65(2):490–500

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Wittenberg JB (1965) The Hemoglobin of Ascaris Perienteric Fluid. BBA-Gen Subjects 111:485–495

    Article  Google Scholar 

  • Pascual-García A, Abia D, Méndez R, Nido GS, Bastolla U (2010) Quantifying the evolutionary divergence of protein structures: the role of function change and function conservation. Proteins 78:181–196

    Article  PubMed  Google Scholar 

  • Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T (2010) GUIDANCE; a web server for assessing alignment confidence scores. Nucleic Acids Res 38:W23-W28

    Article  PubMed Central  Google Scholar 

  • Peterson ES, Huang S, Wang J, Miller LM, Vidugiris G, Kloek AP, Goldberg DE, Chance MR, Wittenberg JB, Friedman JM (1997) A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinata). BioChemistry 36:13110–13121

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Projecto-Garcia J, Zorn N, Didier J, Shaeffer SW, Lallier FH, Hourdez S (2010) Origin and evolution of the unique tetra-domain hemoglobin from the hydrothermal vent scale-worm Branchipolynoe. Mol Biol Evol 27:143–152

    Article  CAS  PubMed  Google Scholar 

  • Projecto-Garcia J, Jollivet D, Mary J, Lallier FH, Schaeffer SW, Hourdez H (2015) Selective forces acting during multidomain protein evolution: the case of multi-domain globins. SpringerPlus 4:354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) Mr Bayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Royer WE Jr, Strand K, van Heel M, Hendrickson WA (2000) Structural hierarchy in erythrocruorin, the giant respiratory assemblage of annelids. P Natl Acad Sci USA 97:7107–7111

    Article  CAS  Google Scholar 

  • Royer WE Jr, Knapp JE, Strand K, Heaslet HA (2001) Cooperative Hemoglobins: Conserved Fold, Diverse Quaternary Assemblies and Allosteric Mechanisms. Trends Biochem Sci 26:297–304

    Article  CAS  PubMed  Google Scholar 

  • Royer WE Jr, Zhu H, Gorr TA, Flores JF, Knapp JE (2005) Allosteric hemoglobin assembly: Diversity and similarity. J Biol Chem 280:27477–27480

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, vol I. 2nd edn. Cold Spring Harbor Laboratory Press

  • Schlitzer R (2015) Ocean Data View 4. http://odv.awi.de

  • Sick H, Gersonde K (1969) Method of continuous registration of O2 binding curves of hemoproteins by means of a diffusion chamber. Ana Biochem 32:362–376

    Article  CAS  Google Scholar 

  • Tunnicliffe V (1991) The Biology of Hydrothermal Vents: Ecology and Evolution. Oceanogr Mar Biol Ann Rev 29:319–407

    Google Scholar 

  • Van Dover CL, Trask J, Gross J, Knowlton A (1999) Reproductive biology of free-living and commensal polynoid polychaetes at the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). Mar Ecol Prog Ser 181:201–214

    Article  Google Scholar 

  • Weber RE (1978) Respiratory pigments. Physiology of annelids. Academic Press Inc, London

    Google Scholar 

  • Weber RE (2000) Adaptations for oxygen transport: Lessons from fish hemoglobins. In: Di Prisco G, Giardina B, Weber RE (eds) Hemoglobin function in vertebrates, molecular adaptation in extreme and temperate environments. Springer, Milan, pp 23–37

    Chapter  Google Scholar 

  • Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628

    CAS  PubMed  Google Scholar 

  • Weber RE, Lykkeboe G, Johansen K (1976) Physiological properties of eel haemoglobin: hypoxic acclimation, phosphate effects and multiplicity. J Exp Bio 64:75–88

    CAS  Google Scholar 

  • Weigert A, Bleidorn C (2016) Current status of annelid phylogeny. Org Div Evol 16(2):345–362

    Article  Google Scholar 

  • Wong WSW, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2008) Computational molecular evolution. Oxford, New York

    Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptations at individual sites along specific lineages. Mol Biol Evol 19:908–917

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical bayes inference of Amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sun J, Chen C, Watanabe HK, Feng D, Zhang Y, Chiu JMY, Qian P-Y, Qiu J-W (2017) Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species. Sci Rep 7:46205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the crews of the ships and submersibles, as well as the chief scientists, of the cruises ATOS 2001 (project funded by Ifremer and INSU), Lau basin (projects funded by two NSF grants to C.R. Fisher (NSF OCE 0240985 and NSF OCE 0732333)), and EPR 2001 (project funded by a NSF Grant to C.R. Fisher (NSF OCE-0002729)). We would also like to thank Isabelle Boutet-Tanguy and Arnaud Tanguy for technical advice in lab, and Matthieu Bruneaux, Anis Bessadok, and Mirjam Czjzek for protein modeling advice. This work is part of the project HYPOXEVO (Région Bretagne), Deep-Sea Annelid Biodiversity and Evolution (Fondation Total), and was supported by the ESTeam research Marie Curie grant under the 6th framework program from the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Projecto-Garcia.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Projecto-Garcia, J., Le Port, AS., Govindji, T. et al. Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms. J Mol Evol 85, 172–187 (2017). https://doi.org/10.1007/s00239-017-9815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-017-9815-7

Keywords

Navigation