Skip to main content
Log in

Evolution of Helix Formation in the Ribosomal Internal Transcribed Spacer 2 (ITS2) and Its Significance for RNA Secondary Structures

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Helices are the most common elements of RNA secondary structure. Despite intensive investigations of various types of RNAs, the evolutionary history of the formation of new helices (novel helical structures) remains largely elusive. Here, by studying the nuclear ribosomal Internal Transcribed Spacer 2 (ITS2), a fast-evolving part of the eukaryotic nuclear ribosomal operon, we identify two possible types of helix formation: one type is “dichotomous helix formation”—transition from one large helix to two smaller helices by invagination of the apical part of a helix, which significantly changes the shape of the original secondary structure but does not increase its complexity (i.e., the total length of the RNA). An alternative type is “lateral helix formation”—origin of an extra helical region by the extension of a bulge loop or a spacer in a multi-helix loop of the original helix, which does not disrupt the pre-existing structure but increases RNA size. Moreover, we present examples from the RNA sequence literature indicating that both types of helix formation may have implications for RNA evolution beyond ITS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahvenniemi P, Wolf M, Lehtonen MJ, Wilson P, German-Kinnari M et al (2009) Evolutionary diversification indicated by compensatory base changes in ITS2 secondary structures in a complex fungal species, Rhizoctonia solani. J Mol Evol 69:150–163

    Article  CAS  PubMed  Google Scholar 

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372

    Article  PubMed Central  PubMed  Google Scholar 

  • An SS, Friedl T, Hegewald E (1999) Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparison. Plant Biol 1:418–428

    Article  Google Scholar 

  • Ancel LW, Fontana W (2000) Plasticity, evolvability, and modularity in RNA. J Exp Zool 288:242–283

    Article  CAS  PubMed  Google Scholar 

  • Babiano R, de la Cruz J (2010) Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 38:5177–5192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behnke A, Engel M, Christen R, Nebel M, Klein RR et al (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:340–349

    Article  CAS  PubMed  Google Scholar 

  • Ben Ali A, Wuyts J, De Wachter R, Meyer A, Van de Peer Y (1999) Construction of a variability map for eukaryotic large subunit ribosomal RNA. Nucleic Acids Res 27:2825–2831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biswal DK, Debnath M, Kumar S, Tandon P (2012) Phylogenetic reconstruction in the order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase k (matK) as a potential marker for DNA barcoding. BMC Bioinformatics 13:S26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caisová L, Marin B, Melkonian M (2011) A close-up view on ITS2 evolution and speciation: a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). BMC Evol Biol 11:262

    Article  PubMed Central  PubMed  Google Scholar 

  • Caisová L, Marin B, Melkonian M (2013) A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 164:482–496

    Article  PubMed  Google Scholar 

  • Casteleyn G, Chepurnov VA, Leliaert F, Mann DG, Bates SS et al (2008) Pseudo-nitzschia pungens (Bacillariophyceae): a cosmopolitan diatom species? Harmful Algae 7:241–257

    Article  CAS  Google Scholar 

  • Clancy S (2008) RNA functions. Nat Educ 1:1

    Google Scholar 

  • Coleman AW (2002) Comparison of Eudorina/Pleodorina ITS sequences of isolates from nature with those from experimental hybrids. Am J Bot 89:1523–1530

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35:3322–3329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman AW (2009) Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol Phylogenet Evol 50:197–203

    Article  CAS  PubMed  Google Scholar 

  • Côté CA, Peculis BA (2001) Role of the ITS2-proximal stem and evidence for indirect recognition of processing sites in pre-rRNA processing in yeast. Nucleic Acids Res 29:2106–2116

    Article  PubMed Central  PubMed  Google Scholar 

  • Côté CA, Greer CL, Peculis BA (2002) Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8:786–797

    Article  PubMed Central  PubMed  Google Scholar 

  • Crease TJ, Taylor DJ (1998) The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans. Mol Biol Evol 15:1430–1446

    Article  CAS  PubMed  Google Scholar 

  • David M, Gabdank I, Ben-David M, Zilka A, Orr I et al (2010) Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3′ UTR and involves scanning of the 5′ UTR. RNA 16:364–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Ley P, De Ley IT, Morris K, Abebe E, Mundo-Ocampo M et al (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philos Trans R Soc Lond B 360:1945–1958

    Article  Google Scholar 

  • De Rijk P, Neefs JM, Van de Peer Y, De Wachter R (1992) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 20:2075–2089

    Article  PubMed Central  PubMed  Google Scholar 

  • Elder JF Jr, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schuster P (1998a) Continuity in evolution: on the nature of transitions. Science 280:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schuster P (1998b) Shaping space: the possible and the attainable in RNA genotype-phenotype mapping. J Theor Biol 194:491–515

    Article  CAS  PubMed  Google Scholar 

  • Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313:17–42

    Article  CAS  PubMed  Google Scholar 

  • Fučíková K, Lewis LA (2012) Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea 12:83–93

    Article  Google Scholar 

  • Fučíková K, Rada JC, Lukešová A, Lewis LA (2011) Cryptic diversity within the genus Pseudomuriella Haganata (Chlorophyta, Chlorophyceae, Sphaeropleales) assessed using four Barcode markers. Nova Hedwigia 93:29–46

    Article  Google Scholar 

  • Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17:184–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geerlings TH, Vos JC, Raue HA (2000) The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5′ → 3′ exonucleases. RNA 6:1698–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gontcharov AA, Melkonian M (2005) Molecular phylogeny of Staurastrum Meyen ex Ralfs and related genera (Zygnematophyceae, Streptophyta) based on coding and noncoding rDNA sequence comparisons. J Phycol 41:887–899

    Article  CAS  Google Scholar 

  • Gonzalez IL, Gorski JL, Campen TJ, Dorney DJ, Erickson JM et al (1985) Variation among human 28S ribosomal RNA genes. Proc Natl Acad Sci USA 82:7666–7670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutell RR (1993) Comparative studies of RNA: inferring higher-order structure from patterns of sequence variation. Curr Opin Struct Biol 3:313–322

    Article  CAS  Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216

    Article  CAS  PubMed  Google Scholar 

  • Gutell RR, Noller HF, Woese CR (1986) Higher order structure in ribosomal RNA. EMBO J 5:1111–1113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD (1992) Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res 20:5785–5795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gutell RR, Lee JC, Cannone JJ (2002) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12:301–310

    Article  CAS  PubMed  Google Scholar 

  • Hancock JM, Dover GA (1988) Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs. Mol Biol Evol 5:377–391

    CAS  PubMed  Google Scholar 

  • Hancock JM, Dover GA (1990) ‘Compensatory slippage’ in the evolution of ribosomal RNA genes. Nucleic Acids Res 18:5949–5954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris DJ, Crandall KA (2000) Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Mol Biol Evol 17:284–291

    Article  CAS  PubMed  Google Scholar 

  • Hassouna N, Michot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hlinka O, Murrell A, Barker SC (2002) Evolution of the secondary structure of the rRNA internal transcribed spacer 2 (ITS2) in hard ticks (Ixodidae, Arthropoda). Heredity 88:275–279

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K (2007) Revision of the genus Cryptomonas (Cryptophyceae) II: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46:402–428

    Article  Google Scholar 

  • Holzer AS, Wootten R, Sommerville C (2007) The secondary structure of the unusually long 18S ribosomal RNA of the myxozoan Sphaerospora truttae and structural evolutionary trends in the Myxozoa. Int J Parasitol 37:1281–1295

    Article  CAS  PubMed  Google Scholar 

  • Hoy MS, Rodriguez RJ (2013) Intragenomic sequence variation at the ITS1–ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: Mollusca). J Mollusc Stud 79:205–217

    Article  Google Scholar 

  • Hunter RL, LaJeunesse TC, Santos SR (2007) Structure and evolution of the rDNA internal transcribed spacer (ITS) region 2 in the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 43:120–128

    Article  CAS  Google Scholar 

  • Hwang UW, Ree HI, Kim W (2000) Evolution of hypervariable regions, V4 and V7, of insect 18S rRNA and their phylogenetic implications. Zool Sci 17:111–121

    Article  CAS  PubMed  Google Scholar 

  • Johansson J (2009) RNA thermosensors in bacterial pathogens. Contrib Microbiol 16:150–160

    Article  CAS  PubMed  Google Scholar 

  • Joseph N, Krauskopf E, Vera MI, Michot B (1999) Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Res 27:4533–4540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keller A, Schleicher T, Förster F, Ruderisch B, Dandekar T et al (2008) ITS2 data corroborate a monophyletic Chlorophyceae DO-group (Sphaeropleales). BMC Evol Biol 8:218

    Article  PubMed Central  PubMed  Google Scholar 

  • Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F (2011) Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 39:2855–2868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krienitz L, Bock C, Dadheech PK, Pröschold T (2011) Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia 50:89–106

    Article  CAS  Google Scholar 

  • Kuzoff RK, Sweere JA, Soltis DE, Soltis PS, Zimmer EA (1998) The phylogenetic potential of entire 26S rDNA sequences in plants. Mol Biol Evol 15:251–263

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Gutell RR (2012) A comparison of the crystal structures of the eukaryotic and bacterial SSU ribosomal RNAs reveals common structural features in the hypervariable regions. PLoS One 7:e38203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luehrsen KR, Nicholson DE, Eubanks DC, Fox GE (1981) An archaebacterial 5S rRNA contains a long insertion sequence. Nature 293:755–756

    Article  CAS  PubMed  Google Scholar 

  • Mai JC, Coleman AW (1997) The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J Mol Evol 44:258–271

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Melkonian M (2010) Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist 161:304–336

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Palm A, Klingberg M, Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145

    Article  CAS  PubMed  Google Scholar 

  • Markert SM, Müller T, Koetschan C, Friedl T, Wolf M (2012) ‘Y’ Scenedesmus (Chlorophyta, Chlorophyceae): the internal transcribed spacer 2 rRNA secondary structure re-revisited. Plant Biol 14:987–996

    Article  CAS  PubMed  Google Scholar 

  • Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S et al (2010) Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. Biochem Biophys Res Commun 399:336–340

    Article  CAS  PubMed  Google Scholar 

  • Michot B, Bachellerie JP (1987) Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 69:11–23

    Article  CAS  PubMed  Google Scholar 

  • Nagel JHA, Pleij CWA (2002) Self-induced structural switches in RNA. Biochimie 84:913–923

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F, Waldminghaus T, Chowdhury S (2006) RNA thermometers. FEMS Microbiol Rev 30:3–16

    Article  CAS  PubMed  Google Scholar 

  • Neefs JM, De Wachter R (1990) A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. Nucleic Acids Res 18:5695–5704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noller HF (2005) RNA structure: reading the ribosome. Science 309:1508–1514

    Article  CAS  PubMed  Google Scholar 

  • Noller HF, Woese CR (1981) Secondary structure of 16S ribosomal RNA. Science 212:403–411

    Article  CAS  PubMed  Google Scholar 

  • Nunn GB, Theisen BF, Christensen B, Arctander P (1996) Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J Mol Evol 42:211–223

    Article  CAS  PubMed  Google Scholar 

  • Peyretaillade E, Biderre C, Peyret P, Duffieux F, Méténier G et al (1998) Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core. Nucleic Acids Res 26:3513–3520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pöll G, Braun T, Jakovljevic J, Neueder A, Jakob S et al (2009) rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLoS One 4:e8249

    Article  PubMed Central  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Pröschold T, Harris EH, Coleman AW (2005) Portrait of a species: Chlamydomonas reinhardtii. Genetics 170:1601–1610

    Article  PubMed Central  PubMed  Google Scholar 

  • Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY et al (2010) Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Front Zool 7:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Reidys C, Stadler PF, Schuster P (1997) Generic properties of combinatory maps: neutral networks of RNA secondary structures. Bull Math Biol 59:339–397

    Article  CAS  PubMed  Google Scholar 

  • Rudi K, Skulberg OM, Larsen F, Jakobsen KS (1997) Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the variable regions V6, V7, and V8. Appl Environ Microbiol 63:2593–2599

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rybalka N, Wolf M, Andersen RA, Friedl T (2013) Congruence of chloroplast- and nuclear-encoded DNA sequence variations used to assess species boundaries in the soil microalga Heterococcus (Stramenopiles, Xanthophyceae). BMC Evol Biol 13:39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schultes EA, Bartel DP (2000) One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289:448–452

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Maisel S, Gerlach D, Müller T, Wolf M (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc Biol Sci 255:279–284

    Article  CAS  PubMed  Google Scholar 

  • Song J, Shi L, Li D, Sun Y, Niu Y et al (2012) Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS One 7:e43971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool 4:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stolc V, Altman S (1997) Rpp1, an essential protein subunit of nuclear RNase P required for processing of precursor tRNA and 35S precursor rRNA in Saccharomyces cerevisiae. Genes Dev 11:2926–2937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swofford DL (2000) Phylogenetic analysis using parsimony (PAUP) (*and other methods) Version 4. Sinauer Associates Inc., Sunderland

  • Thomson E, Tollervey D (2010) The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae. Mol Cell Biol 30:976–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres RA, Ganal M, Hemleben V (1990) GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal RNA genes. J Mol Evol 30:170–181

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y, Chapelle S, De Wachter R (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24:3381–3391

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Hannen EJ, Fink P, Lurling M (2002) A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. Eur J Phycol 37:203–208

    Article  Google Scholar 

  • Vogler AP, Welsh A, Hancock JM (1997) Phylogenetic analysis of slippage-like sequence variation in the V4 rRNA expansion segment in tiger beetles (Cicindelidae). Mol Biol Evol 14:6–19

    Article  CAS  PubMed  Google Scholar 

  • Voigt O, Erpenbeck D, Wörheide G (2008) Molecular evolution of rDNA in early diverging Metazoa: first comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera. BMC Evol Biol 8:69

    Article  PubMed Central  PubMed  Google Scholar 

  • Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8S RNA. Nature 320:287–288

    Article  CAS  PubMed  Google Scholar 

  • Wilcox TP (1998) Large-subunit ribosomal RNA systematics of symbiotic dinoflagellates: morphology does not recapitulate phylogeny. Mol Phylogenet Evol 10:436–448

    Article  CAS  PubMed  Google Scholar 

  • Winker S, Woese CR (1991) A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310

    Article  CAS  PubMed  Google Scholar 

  • Wuyts J, Van de Peer Y, De Wachter R (2001) Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res 29:5017–5028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zakrzewska-Placzek M, Souret FF, Sobczyk GJ, Green PJ, Kufel J (2010) Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res 38:4487–4502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Q, Simpson A, Song W (2012) Insights into the phylogeny of systematically controversial haptorian ciliates (Ciliophora, Litostomatea) based on multigene analyses. Proc Biol Sci 279:2625–2635

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Michael Zuker (Institute for RNA Science and Technology, SUNY Albany, USA) for helpful comments on two different conformations of Helix 1 and for preparing probability dot plots on Pseudomuriella aurantiaca. We also acknowledge two anonymous reviewers for their valuable comments on the manuscript. This study was supported by the University of Cologne and the Heinrich-Hertz-Stiftung (Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen, Germany; fellowship to LC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Caisová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

ITS2 alignment of the 112 Desmodesmus taxa. The secondary structure of ITS2 is described by a bracket notation, note that the alignment of Helix 1 is based on the dichotomous conformation, whereas the alignment of Helix 3 is derived from the non-dichotomous conformation. The alignment contains information on the 3′ end of the 5.8S rRNA (C3/E processing site) and the 5′ end of the 28S rRNA (C1 processing site) according to Côté et al. (2002). It also includes the universal numbering system (Caisová et al. 2011, 2013), and a mask (Mask_Phylogeny) indicating positions used for the phylogenetic analyses

ESM 2

ITS2 alignment of the 12 Pseudomuriella taxa. The secondary structure of ITS2 is described by a bracket notation. The alignment contains information on the 3′ end of the 5.8S rRNA (C3/E processing site) and the 5′ end of the 28S rRNA (C1 processing site) according to Côté et al. (2002). It also includes the universal numbering system (Caisová et al. 2011, 2013). Note that Helix 1 of P. cubensis KF2 cannot be unambiguously aligned with all other strains examined because of its unique sequence

ESM 3

Evolution of dichotomous helix formation of Helix 1 within the Sphaeropleales. Secondary structure diagrams of Helix 1 of the Sphaeropleales and its relatives (Chaetophorales, Chaetopeltidales and Oedogoniales—CCO group) were plotted against a simplified phylogram derived from supplementary material Fig. S3 in Caisová et al. (2013). The CCO group and three sequences of the Sphaeropleales (=Sphaeropleaceae) possess only non-dichotomous version of Helix 1, whereas the remaining organisms (the Sphaeropleales with exclusion of the Sphaeropleaceae, Pseudomuriella and Desmodesmus) display the dichotomous pattern of Helix 1. The intermediate step between the non-dichotomous (=ancestral) and dichotomous (=derived) pattern of Helix 1 is represented by the genus Pseudomuriella, namely by P. aurantiaca in which two thermodynamically indistinguishable structures of Helix 1 exist. One of these is a single (non-dichotomous) helix while the other is the dichotomous form. The P. engadinensis sequences differ in several positions such that now the dichotomous form is thermodynamically more likely. A sequence of transitions leading from the dichotomous (and non-dichotomous) to the non-dichotomous (=ancestral) pattern of Helix 1 in Pseudomuriella is depicted. (Note that only Pseudomuriella sequences with the same number of nucleotides in Helix 1 are shown). Substitutions leading to the ancestral (=non-dichotomous) pattern of Helix 1 in Pseudomuriella are indicated by red and blue colors and by arrows in the appropriate color code. The block of homologous basepairs identified in the variable part of Helix 1 between Sphaeropleaceae and Pseudomuriella is shown in blue. Note that the last nucleotide at the 3′ end of this block (blue arrow) underwent a substitution from A (Sphaeropleaceae) → U (Pseudomuriella). The corresponding regions in both the non-dichotomous and the dichotomous pattern in Pseudomuriella were highlighted using a grey line. Energy values are shown for the whole ITS2 module and refer to a total Gibbs energy (dG—kcal/mol). The 5′ and 3′ termini are labeled. The most parsimonious origin of the dichotomous pattern of Helix 1 is specified by a yellow star. The corresponding regions in all schemes in the CCO group and the Sphaeropleales were highlighted using black and grey colors. (Note that the black color refers to the region from universal basepair 4/15 to universal basepair 9/10. Branches marked in bold were supported by RAxML/MP ≥70 % bootstrap and Bayesian posterior probability (MrBayes) = 1.00. Nine interrupted branches (//) have been shortened to 25, 30, 50, 70 or 75 % of their original length

ESM 4

Dichotomous helix formation in an existing Helix 3. Secondary structure diagrams of two closely related species of green algae: a Desmodesmus arthrodesmiformis DQ417537 and b Desmodesmus armatus AM410661, showing nucleotide rearrangements at the origin of dichotomous helix formation. The brown outlines delineate homologous regions between the non-dichotomous (a-I, b-I) and dichotomous (a-II, b-II) structures of both organisms. The substitutions leading to a different positioning of dichotomous helix formation (a-II vs b-II) are shown in red. The numbering system was adopted from Caisová et al. (2011, 2013). Energy values are shown for the whole ITS2 module and refer to a total Gibbs energy (dG—kcal/mol). Note that the energy values for b-I diagram vary depending on the dichotomous or non-dichotomous conformation of Helix 1. The 5′ and 3′ termini are labeled

ESM 5

Phylogeny of 112 Desmodesmus taxa using ITS2 sequence comparison. The tree topology was reconstructed using RAxML, and was based on 198 aligned ITS2 characters. The branch separating Desmodesmus clade 2 from the remaining Desmodesmus sequences was used for rooting the tree. The support at branches (from left to right) refers to bootstrap values of the RAxML/NJ/MP analyses and to Bayesian posterior probabilities (MrBayes). One interrupted branch (//) has been shortened to 50 % of its original length. Two taxa investigated in Online Resource 4 are highlighted in red. Taxa having two different conformations (dichotomous and non-dichotomous) of Helix 1 and/or Helix 3 are highlighted with colour ranges (grey, blue, green). Note that taxa without any background display only one conformation (dichotomous) of Helix 1 and only one conformation (non-dichotomous) of Helix 3, representing typical helical conformations of the vast majority of taxa/sequences in the Sphaeropleales

ESM 6

Melting probability dot plots of Helix 1 in Pseudomuriella aurantiaca. The sequence of Helix 1 was folded at temperatures ranging from 1.5 to 83.5 °C. a Schematic presentation of temperature-induced changes in structural conformation of Helix 1 in two strains of Pseudomuriella aurantiaca CCAP 249/1 and KF 43. At lower temperatures (<32 °C) the dichotomous structure is the only fold predicted. At 32 °C, the non-dichotomous structure appears and the probability of this structure increases with temperature (for details see b). At about 52 °C both structures are equally likely and only at temperatures higher than 52 °C the non-dichotomous structure dominates. b 165 dot plot graphs showing the probability of dichotomous and non-dichotomous structures of Helix 1 in P. aurantiaca. The header in the images contains the same name (Probability Dotplot for Pseudomuriella_aurantiaca) and the temperature (as for example 32, which means 32 °C; 32_5 means 32.5 °C.)

ESM 7

Different scenarios of the hypothetical origin of the ITS2 module. Schematic presentations of three main possible scenarios (and their modifications) of the origin of the ITS2 module are outlined. a Only dichotomous helix formation is employed. Scheme 1—B9 Helix in Bacteria and Archaea. Scheme 2—prolongation of the apical part (variable region) of the B9 Helix in the putative ancient eukaryote. Schemes 3, 4—invagination of the apical part of the B9 Helix (yellow arrow) and origin of Helix 2 and 3 (H2, H3) by dichotomous helix formation. Scheme 5—prolongation of Helix 2, 3 and invagination of their apical parts (yellow arrows) resulting in the origin of Helix 4 (H4). Scheme 6—a typical ITS2 module with four helices (H1–H4) that are interconnected with the multi (5)-helix loop. b Only lateral helix formation is employed. Scheme 1 is identical to schematic 1 in a. Scheme 2—prolongation of the B9 Helix and expansion of its apical loop, scheme 3—origin of helices 1–4 (H1–H4) using lateral helix formation. c Combination of dichotomous and lateral helix formation employed. There are three different scenarios possible: one is outlined as a schematic drawing and the other two are described in Figure. In the drawing, the first four schemes (1–4) are identical to schemes 1–4 in a. Schemes 5, 6 refer to the origin of Helix 1 (H1) using lateral helix formation and schemes 7, 8 show the origin of Helix 4 (H4) again using lateral helix formation. For the most likely scenario see Results, Fig. 4 and Online Resource 8

ESM 8

Animation of the most likely scenario on the hypothetical evolution of the ITS2 module in eukaryotes. Details about the hypothetical origin of ITS2 are given in Discussion. To run this movie, click the Slide Show button

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caisová, L., Melkonian, M. Evolution of Helix Formation in the Ribosomal Internal Transcribed Spacer 2 (ITS2) and Its Significance for RNA Secondary Structures. J Mol Evol 78, 324–337 (2014). https://doi.org/10.1007/s00239-014-9625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9625-0

Keywords

Navigation