Skip to main content
Log in

Mapping brain volume change across time in primary-progressive multiple sclerosis

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Detection and prediction of the rate of brain volume loss with age is a significant unmet need in patients with primary progressive multiple sclerosis (PPMS). In this study we construct detailed brain volume maps for PPMS patients. These maps compare age-related changes in both cortical and sub-cortical regions with those in healthy individuals.

Methods

We conducted retrospective analyses of brain volume using T1-weighted Magnetic Resonance Imaging (MRI) scans of a large cohort of PPMS patients and healthy subjects. The volume of brain parenchyma (BP), cortex, white matter (WM), deep gray matter, thalamus, and cerebellum were measured using the robust SynthSeg segmentation tool. Age- and gender-related regression curves were constructed based on data from healthy subjects, with the 95% prediction interval adopted as the normality threshold for each brain region.

Results

We analyzed 495 MRI scans from 169 PPMS patients, aged 20–79 years, alongside 563 exams from healthy subjects aged 20–86. Compared to healthy subjects, a higher proportion of PPMS patients showed lower than expected brain volumes in all regions except the cerebellum. The most affected areas were BP, WM, and thalamus. Lower brain volumes correlated with longer disease duration for BP and WM, and higher disability for BP, WM, cortex, and thalamus.

Conclusions

Constructing age- and gender-related brain volume maps enabled identifying PPMS patients at a higher risk of brain volume loss. Monitoring these high-risk patients may lead to better treatment decisions and improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The IXI dataset used for MRI scans of healthy subjects is publicly available at https://brain-development.org/ixi-dataset/. The MRI data and clinical information for PPMS patients used in this study are not publicly available due to privacy and ethical restrictions, as they were obtained from the SMCMS Data Registry, which contains sensitive patient information and is subject to strict confidentiality agreements.

References

  1. Browne P, Chandraratna D, Angood C et al (2014) Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology 83:1022–1024. https://doi.org/10.1212/WNL.0000000000000768

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dobson R, Giovannoni G (2019) Multiple sclerosis - a review. Eur J Neurol 26:27–40. https://doi.org/10.1111/ene.13819

    Article  CAS  PubMed  Google Scholar 

  3. Gorman MP, Healy BC, Polgar-Turcsanyi M, Chitnis T (2009) Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol 66:54–59. https://doi.org/10.1001/archneurol.2008.505

    Article  PubMed  Google Scholar 

  4. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7

    Article  CAS  PubMed  Google Scholar 

  5. Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. Lancet Neurol 6:903–912. https://doi.org/10.1016/S1474-4422(07)70243-0

    Article  PubMed  Google Scholar 

  6. Fox EJ, Markowitz C, Applebee A et al (2018) Ocrelizumab reduces progression of upper extremity impairment in patients with primary progressive multiple sclerosis: Findings from the phase III randomized ORATORIO trial. Mult Scler 24:1862–1870. https://doi.org/10.1177/1352458518808189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Filippi M, Preziosa P, Barkhof F et al (2021) Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective: A Review. JAMA Neurol 78:351–364. https://doi.org/10.1001/jamaneurol.2020.4689

    Article  PubMed  Google Scholar 

  8. Kremenchutzky M, Lee D, Rice GP, Ebers GC (2000) Diagnostic brain MRI findings in primary progressive multiple sclerosis. Mult Scler 6:81–85. https://doi.org/10.1177/135245850000600205

    Article  CAS  PubMed  Google Scholar 

  9. Montalban X, Sastre-Garriga J, Filippi M et al (2009) Primary progressive multiple sclerosis diagnostic criteria: a reappraisal. Mult Scler 15:1459–1465. https://doi.org/10.1177/1352458509348422

    Article  CAS  PubMed  Google Scholar 

  10. Rocca MA, Absinta M, Filippi M (2012) The role of advanced magnetic resonance imaging techniques in primary progressive MS. J Neurol 259:611–621. https://doi.org/10.1007/s00415-011-6195-6

    Article  PubMed  Google Scholar 

  11. Smolinski L, Litwin T, Redzia-Ogrodnik B et al (2019) Brain volume is related to neurological impairment and to copper overload in Wilson’s disease. Neurol Sci 40:2089–2095. https://doi.org/10.1007/s10072-019-03942-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pagani E, Rocca MA, Gallo A et al (2005) Regional brain atrophy evolves differently in patients with multiple sclerosis according to clinical phenotype. AJNR Am J Neuroradiol 26:341–346

    PubMed  PubMed Central  Google Scholar 

  13. Eshaghi A, Prados F, Brownlee WJ et al (2018) Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol 83:210–222. https://doi.org/10.1002/ana.25145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andravizou A, Dardiotis E, Artemiadis A et al (2019) Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. Auto Immun Highlights 10:7. https://doi.org/10.1186/s13317-019-0117-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sepulcre J, Sastre-Garriga J, Cercignani M et al (2006) Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 63:1175–1180. https://doi.org/10.1001/archneur.63.8.1175

    Article  PubMed  Google Scholar 

  16. Eshaghi A, Marinescu RV, Young AL et al (2018) Progression of regional grey matter atrophy in multiple sclerosis. Brain 141:1665–1677. https://doi.org/10.1093/brain/awy088

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gur RC, Mozley PD, Resnick SM et al (1991) Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proc Natl Acad Sci U S A 88:2845–2849. https://doi.org/10.1073/pnas.88.7.2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302. https://doi.org/10.1002/ana.22366

    Article  PubMed  PubMed Central  Google Scholar 

  19. Swanton JK, Rovira A, Tintore M et al (2007) MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol 6:677–686. https://doi.org/10.1016/S1474-4422(07)70176-X

    Article  PubMed  Google Scholar 

  20. Li X, Morgan PS, Ashburner J et al (2016) The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods 264:47–56. https://doi.org/10.1016/j.jneumeth.2016.03.001

    Article  PubMed  Google Scholar 

  21. Billot B, Greve DN, OulaPuonti c AT et al (2023) SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining. Med Image Anal 86:102789. https://doi.org/10.1016/j.media.2023.102789

    Article  PubMed  PubMed Central  Google Scholar 

  22. Billot B, Magdamo C, Cheng Y et al (2023) Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets. Proc Natl Acad Sci U S A 120:e2216399120. https://doi.org/10.1073/pnas.2216399120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caspi Y, Brouwer RM, Schnack HG et al (2020) Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study. Neuroimage 220:116842. https://doi.org/10.1016/j.neuroimage.2020.116842

    Article  PubMed  Google Scholar 

  24. Iglesias JE, Ferraris S, Modat M et al (2017) Template-free estimation of intracranial volume: A preterm birth animal model study. 3–13. https://doi.org/10.1007/978-3-319-67561-9_1

  25. Voevodskaya O, Simmons A, Nordenskjöld R et al (2014) The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front Aging Neurosci 6:264. https://doi.org/10.3389/fnagi.2014.00264

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hansen TI, Brezova V, Eikenes L et al (2015) How Does the Accuracy of Intracranial Volume Measurements Affect Normalized Brain Volumes? Sample Size Estimates Based on 966 Subjects from the HUNT MRI Cohort. AJNR Am J Neuroradiol 36:1450–1456. https://doi.org/10.3174/ajnr.A4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borgonovo E, Plischke E (2016) Sensitivity analysis: A review of recent advances. Eur J Oper Res 248:869–887. https://doi.org/10.1016/j.ejor.2015.06.032

    Article  Google Scholar 

  28. Pollard TJ, Johnson AEW, Raffa JD, Mark RG (2018) An open source Python package for producing summary statistics for research papers. JAMIA Open 1:26–31. https://doi.org/10.1093/jamiaopen/ooy012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. pp 92–96. https://doi.org/10.25080/Majora-92bf1922-011

  30. Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hunter JD (2007) Matplotlib: A 2D Graphics Environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  32. Waskom M (2021) seaborn: statistical data visualization. J Open Source Softw 6:3021. https://doi.org/10.21105/joss.03021

    Article  Google Scholar 

  33. Carne RP, Vogrin S, Litewka L, Cook MJ (2006) Cerebral cortex: an MRI-based study of volume and variance with age and sex. J Clin Neurosci 13:60–72. https://doi.org/10.1016/j.jocn.2005.02.013

    Article  PubMed  Google Scholar 

  34. Enzinger C, Fazekas F, Matthews PM et al (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64:1704–1711. https://doi.org/10.1212/01.WNL.0000161871.83614.BB

    Article  CAS  PubMed  Google Scholar 

  35. Schuff N, Woerner N, Boreta L et al (2009) MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132:1067–1077. https://doi.org/10.1093/brain/awp007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheline YI, Gado MH, Price JL (1998) Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport 9:2023–2028. https://doi.org/10.1097/00001756-199806220-00021

    Article  CAS  PubMed  Google Scholar 

  37. Günther V, Lindner C, Dannlowski U et al (2016) Amygdalar Gray Matter Volume and Social Relating in Schizophrenia. Neuropsychobiology 74:139–143. https://doi.org/10.1159/000458528

    Article  PubMed  Google Scholar 

  38. Cagol A, Schaedelin S, Barakovic M et al (2022) Association of Brain Atrophy With Disease Progression Independent of Relapse Activity in Patients With Relapsing Multiple Sclerosis. JAMA Neurol 79:682–692. https://doi.org/10.1001/jamaneurol.2022.1025

    Article  PubMed  Google Scholar 

  39. Herting MM, Sowell ER (2017) Puberty and structural brain development in humans. Front Neuroendocrinol 44:122–137. https://doi.org/10.1016/j.yfrne.2016.12.003

    Article  PubMed  Google Scholar 

  40. Rovaris M, Gallo A, Falini A et al (2005) Axonal injury and overall tissue loss are not related in primary progressive multiple sclerosis. Arch Neurol 62:898–902. https://doi.org/10.1001/archneur.62.6.898

    Article  PubMed  Google Scholar 

  41. Chen X, Schädelin S, Lu P-J et al (2023) Personalized maps of T1 relaxometry abnormalities provide correlates of disability in multiple sclerosis patients. Neuroimage Clin 37:103349. https://doi.org/10.1016/j.nicl.2023.103349

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kolind S, Matthews L, Johansen-Berg H et al (2012) Myelin water imaging reflects clinical variability in multiple sclerosis. Neuroimage 60:263–270. https://doi.org/10.1016/j.neuroimage.2011.11.070

    Article  PubMed  Google Scholar 

  43. Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712. https://doi.org/10.1093/brain/awh641

    Article  PubMed  Google Scholar 

  44. Mesaros S, Rocca MA, Pagani E et al (2011) Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol 32:1016–1020. https://doi.org/10.3174/ajnr.A2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minagar A, Barnett MH, Benedict RHB et al (2013) The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 80:210–219. https://doi.org/10.1212/WNL.0b013e31827b910b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Motl RW, Zivadinov R, Bergsland N, Benedict RHB (2016) Thalamus volume and ambulation in multiple sclerosis: a cross-sectional study. Neurodegener Dis Manag 6:23–29. https://doi.org/10.2217/nmt.15.71

    Article  PubMed  Google Scholar 

  47. Batista S, Zivadinov R, Hoogs M et al (2012) Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol 259:139–146. https://doi.org/10.1007/s00415-011-6147-1

    Article  PubMed  Google Scholar 

  48. Siger M (2022) Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients : Review. Clin Neuroradiol 32:625–641. https://doi.org/10.1007/s00062-022-01144-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Anderson VM, Wheeler-Kingshott CAM, Abdel-Aziz K et al (2011) A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis. Mult Scler 17:1079–1087. https://doi.org/10.1177/1352458511403528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zivadinov R, Sepcic J, Nasuelli D et al (2001) A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 70:773–780. https://doi.org/10.1136/jnnp.70.6.773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the patients and caregivers whose essential contributions have been invaluable to this manuscript.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Warszawer.

Ethics declarations

Ethics approval

The study was approved by the Internal Review Board of Sheba Medical Center. Informed consent was waived as the study was non-interventional and retrospective. Data was collected, coded, and analyzed according to the ethical standards of human experimentation.

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warszawer, Y., Gurevich, M., Kerpel, A. et al. Mapping brain volume change across time in primary-progressive multiple sclerosis. Neuroradiology (2024). https://doi.org/10.1007/s00234-024-03354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00234-024-03354-7

Keywords

Navigation