Skip to main content

Advertisement

Log in

Neural correlates of central pain sensitization in chronic low back pain: a resting-state fMRI study

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study is to explore the neural correlates of pain sensitization in patients with chronic low back pain (cLBP). While the association between cLBP and pain sensitization has been widely reported, the underlying brain mechanism responsible for this relationship requires further investigation.

Methods

Our study included 56 cLBP patients and 56 healthy controls (HC). Functional magnetic resonance imaging data were obtained, and the voxel-wise amplitude of low-frequency fluctuation (ALFF) was calculated to identify brain alterations in cLBP patients compared to HC groups. Pearson correlation coefficients were computed to explore the association between clinical data and brain alterations. Furthermore, mediation analyses were performed to investigate the path association between brain alterations and pain-related behaviors.

Results

Our findings revealed that patients with cLBP exhibited higher sensitivity, attention, and catastrophizing tendencies towards pain compared to HC. Furthermore, cLBP patients displayed significantly higher ALFF in various brain regions within the “pain matrix” and the default mode network when compared to HC. The altered precuneus ALFF was positively correlated with pain intensity (R = 0.51, P<0.001) and was negatively correlated with pain sensitivity (R = −0.43, P<0.001) in cLBP patients. Importantly, the effect of altered precuneus ALFF on pain intensity was mediated by pain threshold in these patients.

Conclusion

Our study suggests that altered neural activity in the precuneus may contribute to pain hypersensitivity, which further exacerbating pain in cLBP patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Dillen LR et al (2021) Effect of motor skill training in functional activities vs strength and flexibility exercise on function in people with chronic low back pain: a randomized clinical trial. JAMA Neurol 78(4):385–395

    Article  PubMed  Google Scholar 

  2. Delitto A et al (2012) Low back pain. J Orthop Sports Phys Ther 42(4):A1-57

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maher C, Underwood M, Buchbinder R (2017) Non-specific low back pain. Lancet 389(10070):736–747

    Article  PubMed  Google Scholar 

  4. Urits I et al (2019) Low back pain, a comprehensive review: pathophysiology, diagnosis, and treatment. Curr Pain Headache Rep 23(3):23

    Article  PubMed  Google Scholar 

  5. Pinto EM et al (2023) The importance of inflammatory biomarkers in non-specific acute and chronic low back pain: a systematic review. Eur Spine J

  6. Slouma M et al (2023) Pro-inflammatory cytokines in patients with low back pain: a comparative study. Reumatol Clin (Engl Ed) 19(5):244–248

    Article  PubMed  Google Scholar 

  7. Bagg MK et al (2022) Effect of graded sensorimotor retraining on pain intensity in patients with chronic low back pain: a randomized clinical trial. Jama 328(5):430–439

    Article  PubMed  PubMed Central  Google Scholar 

  8. Konno SI, Sekiguchi M (2018) Association between brain and low back pain. J Orthop Sci 23(1):3–7

    Article  PubMed  Google Scholar 

  9. Meier ML, Vrana A, Schweinhardt P (2019) Low back pain: the potential contribution of supraspinal motor control and proprioception. Neuroscientist 25(6):583–596

    Article  PubMed  Google Scholar 

  10. Nijs J et al (2017) In the spine or in the brain? Recent advances in pain neuroscience applied in the intervention for low back pain. Clin Exp Rheumatol 35(5):108–115

    PubMed  Google Scholar 

  11. Nijs J et al (2015) Low back pain: guidelines for the clinical classification of predominant neuropathic, nociceptive, or central sensitization pain. Pain Physician 18(3):E333–E346

    Article  PubMed  Google Scholar 

  12. Nopsopon T et al (2022) Nonoperative treatment for pain sensitization in patients with low back pain: protocol for a systematic review. Syst Rev 11(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sanzarello I et al (2016) Central sensitization in chronic low back pain: a narrative review. J Back Musculoskelet Rehabil 29(4):625–633

    Article  PubMed  Google Scholar 

  14. Ivo R et al (2013) Brain structural and psychometric alterations in chronic low back pain. Eur Spine J 22(9):1958–1964

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buckalew N et al (2008) Chronic pain is associated with brain volume loss in older adults: preliminary evidence. Pain Med 9(2):240–248

    Article  PubMed  Google Scholar 

  16. Neumann N et al (2023) Chronic pain is associated with less grey matter volume in the anterior cingulum, anterior and posterior insula and hippocampus across three different chronic pain conditions. Eur J Pain

  17. Robinson ME et al (2011) Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J Pain 12(4):436–443

    Article  PubMed  Google Scholar 

  18. Ruscheweyh R et al (2011) Pain is associated with regional grey matter reduction in the general population. Pain 152(4):904–911

    Article  PubMed  Google Scholar 

  19. Eun S et al (2020) Brain functional connectivity changes by low back extension pain model in low back pain patients. PLoS One 15(6):e0233858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kong J et al (2013) S1 is associated with chronic low back pain: a functional and structural MRI study. Mol Pain 9:43

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lamichhane B et al (2021) Multi-modal biomarkers of low back pain: a machine learning approach. Neuroimage Clin 29:102530

    Article  PubMed  Google Scholar 

  22. Loisel P et al (2002) Discriminative and predictive validity assessment of the Quebec task force classification. Spine (Phila Pa 1976) 27(8):851–857

    Article  PubMed  Google Scholar 

  23. Shen B et al (2018) Translation and validation of simplified Chinese version of the pain catastrophizing scale in chronic pain patients: education may matter. Mol Pain 14:1744806918755283

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wong WS, McCracken LM, Fielding R (2011) Factorial validity and reliability of the Chinese version of the pain vigilance and awareness questionnaire (ChPVAQ) in a sample of Chinese patients with chronic pain. Pain Med 12(7):1018–1025

    Article  PubMed  Google Scholar 

  25. Su Q et al (2023) Preoperative pain hypersensitivity is associated with axial pain after posterior cervical spinal surgeries in degenerative cervical myelopathy patients: a preliminary resting-state fMRI study. Insights Imaging 14(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao R et al (2022) Functional MRI evidence for primary motor cortex plasticity contributes to the disease's severity and prognosis of cervical spondylotic myelopathy patients. Eur Radiol 32(6):3693–3704

    Article  PubMed  Google Scholar 

  27. Li H et al (2020) Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia. Neuroimage 221:117186

    Article  PubMed  Google Scholar 

  28. Li T et al (2023) Deficits in the thalamocortical pathway associated with hypersensitivity to pain in patients with frozen shoulder. Front Neurol 14:1180873

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cao DZ et al (2019) Effectiveness of extracorporeal shock-wave therapy for frozen shoulder: a protocol for a systematic review of randomized controlled trial. Medicine (Baltimore) 98(7):e14506

    Article  PubMed  Google Scholar 

  30. Rangan A et al (2020) Management of adults with primary frozen shoulder in secondary care (UK FROST): a multicentre, pragmatic, three-arm, superiority randomised clinical trial. Lancet 396(10256):977–989

    Article  CAS  PubMed  Google Scholar 

  31. Balasch-Bernat M et al (2021) The spatial extent of pain is associated with pain intensity, catastrophizing and some measures of central sensitization in people with frozen shoulder. J Clin Med 11(1)

  32. Heathcote LC, Simons LE (2020) Stuck on pain? Assessing children's vigilance and awareness of pain sensations. Eur J Pain 24(7):1339–1347

    Article  PubMed  PubMed Central  Google Scholar 

  33. Monticone M et al (2016) Development of the Italian version of the pain vigilance and awareness questionnaire in subjects with chronic low back pain: cross-cultural adaptation, confirmatory factor analysis, reliability and validity. Int J Behav Med 23(2):214–223

    Article  PubMed  Google Scholar 

  34. Van Bogaert W et al (2021) Influence of baseline kinesiophobia levels on treatment outcome in people with chronic spinal pain. Phys Ther 101(6)

  35. Nagasaka K et al (2022) Cortical signature related to psychometric properties of pain vigilance in healthy individuals: a voxel-based morphometric study. Neurosci Lett 772:136445

    Article  CAS  PubMed  Google Scholar 

  36. Peters ML, Vlaeyen JW, Kunnen AM (2002) Is pain-related fear a predictor of somatosensory hypervigilance in chronic low back pain patients? Behav Res Ther 40(1):85–103

    Article  PubMed  Google Scholar 

  37. Andersen CH et al (2014) Effect of scapular function training on chronic pain in the neck/shoulder region: a randomized controlled trial. J Occup Rehabil 24(2):316–324

    Article  PubMed  Google Scholar 

  38. Dias LV et al (2021) Immediate analgesic effect of transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) on chronic low back pain: randomised placebo-controlled trial. J Bodyw Mov Ther 27:181–190

    Article  PubMed  Google Scholar 

  39. Llamas-Ramos R et al (2014) Comparison of the short-term outcomes between trigger point dry needling and trigger point manual therapy for the management of chronic mechanical neck pain: a randomized clinical trial. J Orthop Sports Phys Ther 44(11):852–861

    Article  PubMed  Google Scholar 

  40. Paungmali A et al (2017) Lumbopelvic core stabilization exercise and pain modulation among individuals with chronic nonspecific low back pain. Pain Pract 17(8):1008–1014

    Article  PubMed  Google Scholar 

  41. Castaldo M et al (2019) Widespread pressure pain hypersensitivity, health history, and trigger points in patients with chronic neck pain: a preliminary study. Pain Med 20(12):2516–2527

    Article  PubMed  Google Scholar 

  42. Amiri M et al (2021) Pressure pain threshold in patients with chronic pain: a systematic review and meta-analysis. Am J Phys Med Rehabil 100(7):656–674

    Article  PubMed  Google Scholar 

  43. Pfau DB et al (2014) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): reference data for the trunk and application in patients with chronic postherpetic neuralgia. Pain 155(5):1002–1015

    Article  PubMed  Google Scholar 

  44. Özden MCP et al (2020) Efficacy of dry needling in patients with myofascial temporomandibular disorders related to the masseter muscle. Cranio 38(5):305–311

    Article  PubMed  Google Scholar 

  45. Andersen S et al (2015) Pressure pain thresholds assessed over temporalis, masseter, and frontalis muscles in healthy individuals, patients with tension-type headache, and those with migraine--a systematic review. Pain 156(8):1409–1423

    Article  PubMed  Google Scholar 

  46. Dibai Filho AV et al (2021) Relationship between pressure and thermal pain threshold, pain intensity, catastrophizing, disability, and skin temperature over myofascial trigger point in individuals with neck pain. Rev Assoc Med Bras 67(12):1798–1803

    Article  PubMed  Google Scholar 

  47. Jones SA et al (2020) Default mode network connectivity is related to pain frequency and intensity in adolescents. Neuroimage Clin 27:102326

    Article  PubMed  PubMed Central  Google Scholar 

  48. Otti A, Noll-Hussong M (2012) Acupuncture-induced pain relief and the human brain's default mode network - an extended view of central effects of acupuncture analgesia. Forsch Komplementmed 19(4):197–201

    Article  PubMed  Google Scholar 

  49. Ter Minassian A et al (2013) Dissociating anticipation from perception: acute pain activates default mode network. Hum Brain Mapp 34(9):2228–2243

    Article  PubMed  Google Scholar 

  50. Wu Y et al (2020) Disrupted default mode network dynamics in recuperative patients of herpes zoster pain. CNS Neurosci Ther 26(12):1278–1287

    Article  PubMed  PubMed Central  Google Scholar 

  51. Loggia ML et al (2013) Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 154(1):24–33

    Article  PubMed  Google Scholar 

  52. Ng SK et al (2021) Examining resting-state functional connectivity in key hubs of the default mode network in chronic low back pain. Scand J Pain 21(4):839–846

    Article  PubMed  Google Scholar 

  53. Zhang B et al (2019) Identifying brain regions associated with the neuropathology of chronic low back pain: a resting-state amplitude of low-frequency fluctuation study. Br J Anaesth 123(2):e303–e311

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang X et al (2020) Pain in the default mode network: a voxel-based morphometry study on thermal pain sensitivity. Neuroreport 31(14):1030–1035

    Article  CAS  PubMed  Google Scholar 

  55. Alshelh Z et al (2018) Disruption of default mode network dynamics in acute and chronic pain states. Neuroimage Clin 17:222–231

    Article  CAS  PubMed  Google Scholar 

  56. Čeko M et al (2020) Default mode network changes in fibromyalgia patients are largely dependent on current clinical pain. Neuroimage 216:116877

    Article  PubMed  Google Scholar 

  57. Hunt CA et al (2022) Is mindfulness associated with lower pain reactivity and connectivity of the default mode network? A replication and extension study in healthy and episodic migraine participants. J Pain 23(12):2110–2120

    Article  PubMed  Google Scholar 

  58. Del Casale A et al (2015) Pain perception and hypnosis: findings from recent functional neuroimaging studies. Int J Clin Exp Hypn 63(2):144–170

    Article  PubMed  Google Scholar 

  59. Gallace A, Bellan V (2018) The parietal cortex and pain perception: a body protection system. Handb Clin Neurol 151:103–117

    Article  PubMed  Google Scholar 

  60. Goffaux P et al (2014) Individual differences in pain sensitivity vary as a function of precuneus reactivity. Brain Topogr 27(3):366–374

    Article  PubMed  Google Scholar 

  61. Wu X et al (2022) Elevated GABA level in the precuneus and its association with pain intensity in patients with postherpetic neuralgia: an initial proton magnetic resonance spectroscopy study. Eur J Radiol 157:110568

    Article  PubMed  Google Scholar 

  62. Salomons TV et al (2016) The "pain matrix" in pain-free individuals. JAMA Neurol 73(6):755–756

    Article  PubMed  Google Scholar 

  63. Liang M et al (2019) Spatial patterns of brain activity preferentially reflecting transient pain and stimulus intensity. Cereb Cortex 29(5):2211–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Hebei Medical Science Research Project Plan 20231737.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiGuo Ma.

Ethics declarations

Conflict of interest

The authors of this manuscript assert that they have no affiliations or financial ties with any companies that offer products or services related to the topic of the article.

Ethical approval

The Institutional Review Board of the Second Hospital of Tangshan approved our study.

Informed consent

In this study, all participants, including patients, were provided with written consent after receiving comprehensive information about the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Figure S1. The QQ-plots for clinical assessments in both chronic low back pain patients (cLBP) and healthy controls (HC). The black dots represent the clinical measures of cLBP patients and pink dots represent the clinical measures of HC. PVAQ: pain vigilance and awareness questionnaire; PCS: pain catastrophe scale. (PDF 228 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, N., Chen, J., Zhao, B. et al. Neural correlates of central pain sensitization in chronic low back pain: a resting-state fMRI study. Neuroradiology 65, 1767–1776 (2023). https://doi.org/10.1007/s00234-023-03237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03237-3

Keywords

Navigation